

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	plumbery 1.0.4 documentation

The documentation of Plumbery

	Plumbery
	Features

	Contributors

	Credits

	Why plumbery?
	One day in the life of an ordinary infrastructure manager

	Infrastructure as code

	Infrastructure as code at Dimension Data with Apache Libcloud

	What should be described in the fittings plan?

	How to run Plumbery?

	Using plumbery
	Using plumbery from the command-line

	Using from Docker

	Using Plumbery as a python library

	How to install plumbery?
	Installing plumbery on Linux and Mac OSX

	Installing plumbery on Microsoft Windows

	The structure and content of fittings file
	Keywords used by plumbery

	Multiple documents in one fittings file

	Deploying in multiple geographies

	Combining private and public clouds in a deployment

	Environment variables

	Dynamic variables

	Using dynamic variables

	Complete example

	How to contribute to Plumbery?
	You are not a developer? We are glad that you are involved

	Ready to contribute? Here’s how to set up Plumbery for local development

	Pull Request Guidelines

	History
	1.0.4 (2016-12-20)

	1.0.2 (2016-11-6)

	1.0.1 (2016-10-14)

	1.0.0 (2016-07-15)

	0.9.9 (2016-06-10)

	0.9.8 (2016-06-10)

	0.9.7 (2016-06-08)

	0.9.6 (2016-06-06)

	0.9.5 (2016-05-28)

	0.9.4 (2016-05-27)

	0.9.3 (2016-05-27)

	0.9.2 (2016-05-27)

	0.9.1 (2016-05-26)

	0.9.0 (2016-05-25)

	0.8.1 (2016-05-23)

	0.8.0 (2016-04-13)

	0.7.0 (2016-04-06)

	0.6.0 (2016-03-15)

	0.5.0 (2016-03-13)

	0.4.3 (2016-02-28)

	0.4.2 (2016-02-14)

	0.4.1 (2016-01-24)

	0.4.0 (2016-01-17)

	0.3.4 (2016-01-06)

	0.3.3 (2015-12-31)

	0.3.2 (2015-12-23)

	0.2.4 (2015-12-13)

	0.2.3 (2015-12-07)

	0.2.2 (2015-12-05)

	0.2.1 (2015-12-02)

	0.2.0 (2015-11-29)

	0.1.2 (2015-11-27)

	0.1.0 (2015-11-20)

	Documentation extracted from the code
	Subpackages

	Submodules

	Module contents

	Index

 Copyright 2015-206, the community of plumbery users.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	plumbery 1.0.4 documentation

Plumbery

 [https://pypi.python.org/pypi/plumbery]
 [https://travis-ci.org/DimensionDataCBUSydney/plumbery][image: https://coveralls.io/repos/github/DimensionDataCBUSydney/plumbery/badge.svg?branch=master]
 [https://coveralls.io/github/DimensionDataCBUSydney/plumbery?branch=master][image: https://readthedocs.org/projects/plumbery/badge/?version=latest]
 [http://plumbery.readthedocs.io/en/latest/?badge=latest][image: https://img.shields.io/pypi/l/plumbery.svg?maxAge=2592000]
 [https://pypi.python.org/pypi/plumbery][image: https://img.shields.io/pypi/pyversions/plumbery.svg?maxAge=2592000]
 [https://pypi.python.org/pypi/plumbery]Infrastructure as code at Dimension Data with Apache Libcloud

	Documentation: Plumbery at ReadTheDocs [https://plumbery.readthedocs.org]

	Python package: Plumbery at PyPi [https://pypi.python.org/pypi/plumbery]

	Source code: Plumbery at GitHub [https://github.com/DimensionDataCBUSydney/plumbery]

	Free software: Apache License (2.0) [http://www.apache.org/licenses/LICENSE-2.0]

Features

	50+ tutorials covering popular use cases

	Read fittings plan in YAML

	Load parameters in separate YAMl file

	Use cloud API to create the network infrastructure, and to build nodes

	Bootstrap nodes with cloud-init configuration directives

	Inject actual addresses and on-the-fly secrets to contextualisation

	Create RSA keys and passwords to secure deployments

	Pass environment variables to target nodes

	Preserve random secrets across multiple invocations

	Create network domains and Ethernet networks

	Reserve public IPv4 addresses

	Manage network address translation rules

	Manage firewall rules

	Create load balancers with pools of nodes

	All images in libraries are available to new nodes

	Specify number of CPU, or core per CPU, and CPU speed

	Specify node memory

	Add virtual disks and specify tiers of storage

	Add multiple network interfaces to nodes

	Set private IPv4 statically

	Add public IPv4 addresses to nodes

	Add monitoring to nodes

	Add backup to nodes

	Build all blueprints

	Build a blueprint across multiple locations

	Start all nodes

	Start nodes belonging to the same blueprint

	Polish Linux nodes for quick bootstrapping

	Build a full inventory of nodes that have been deployed

	Reflect fittings into a ready-to-use inventory for ansible

	Stop all nodes

	Stop nodes belonging to the same blueprint

	Wipe all nodes

	Wipe nodes belonging to the same blueprint

	Destroy part of the setup, or all blueprints

	You can extend plumbery with your own software, it has been designed for that

	Run from the command line, or as a python library, or as a container

	Accept custom actions from the command line too

	Limit plumbing to some locations if needed

Contributors

	Bernard Paques [https://github.com/bernard357] [Dimension Data employee] (development lead)

	Anthony Shaw [https://github.com/tonybaloney] [Dimension Data employee]

	Olivier Grosjeanne [https://github.com/job-so] [Dimension Data employee]

	Jacques Clément [https://github.com/jacquesclement] [Dimension Data employee]

	Asim Khawaja [https://github.com/asimkhawaja] [Dimension Data employee]

	Geoffrey Cristallo [https://be.linkedin.com/in/geoffrey-cristallo-5b506417]

Credits

	Cloud-Init [https://cloudinit.readthedocs.org/en/latest/topics/examples.html]

	Apache Libcloud [https://libcloud.apache.org/]

	netifaces [https://pypi.python.org/pypi/netifaces]

	PyYAML [https://pypi.python.org/pypi/PyYAML]

	Cookiecutter [https://github.com/audreyr/cookiecutter]

	cookiecutter-pypackage [https://github.com/audreyr/cookiecutter-pypackage]

 Copyright 2015-206, the community of plumbery users.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	plumbery 1.0.4 documentation

Why plumbery?

Plumbery is an open-source project that was initiated by Dimension Data to accelerate
the digital transformation of our clients.

One day in the life of an ordinary infrastructure manager

This project started in response to a very common issue. How to accelerate the
creation, the handling, and the destruction of up to 60 virtual servers
easily? The purpose here is not to supplement Chef, Puppet, and other smart
configuration management that already exist. The first priority is to industrialise
operations on the underlying virtualised iron.

[image: _images/plumbery.png]
The Plumbery toolbox is based on a central description of servers,
documented in a text file in YAML [https://en.wikipedia.org/wiki/YAML]. If you do not know YAML yet, don’t be
afraid, this may be the most simple and user-friendly language for
infrastructure managers. .

Then very simple command is used to act on the infrastructure. For example
you can build the entire set of resources described in the fittings plan
directly from the command line:

$ python -m plumbery fittings.yaml deploy

This will load the YAML file, parse it, and call the cloud API to make it
happen. Relax, and grab some coffee while plumbery adds network domains,
Ethernet networks, and servers as per your specifications. The engine may plumb
at various data centres spread on Earth, thanks to the power of Apache Libcloud.
Nodes will be started and contextualise with cloud-init directives as well.

Now you can concentrate on important things, connect remotely to the nodes,
play with them, run different tests, etc. At the end of the game, you would
just have to stop all servers and destroy them as per following command:

$ python -m plumbery fittings.yaml dispose

Infrastructure as code

Plumbery fully supports the idea that infrastructure should be handled like code.
For people who have relied for years on the power of physical stuff, this may be a shock.
So let’s repeat it again.
When interesting resources have been virtualised and accessed remotely then
suddenly infrastructure managers have new challenges. Infrastructure should be
treated like code is. A lot of best practices are coming with this paradigm.

And issues, too. Becoming a trusted Ops –yes, the second half-part of DevOps– is not so
easy. How to deal with developers while being not a software developer? Well,
this is exactly why Plumbery has been developed.

Actually we believe that every infrastructure manager should have enough skills
to manage sophisticated configurations with plumbery. Here we are referring to tasks like the following:

	open and edit textual files

	understand and modify configuration files

	connect to a Linux server via ssh

	set environment variables

	run a command from the prompt line

	execute a python program

Infrastructure as code at Dimension Data with Apache Libcloud

If infrastructure should be handled like code, then your first task is to
document a target deployment into a text file. In the context of Plumbery, this
is called the fittings plan, and it is commonly put into a file
named fittings.yaml. This is also called the fittings file.

With that in hands, you can then ask Plumbery to act on the infrastructure and
on nodes. The engine has built-in code to cover the full life cycle:

	deploy the infrastructure and configure it

	build nodes

	start nodes

	stop nodes

	destroy nodes

	dispose the infrastructure and release all resources

What should be described in the fittings plan?

Most, if not all, elements of Dimension Data cloud services, can be handled
by plumbery. This is covering:

	Network Domains

	Networks

	Private IP addresses

	Public IP addresses

	NAT rules

	Firewall rules

	Cloud Servers

	Load-Balancers

	Monitoring dashboard

	Cloud Backup

Plumbery has been extended so that it can handle external cloud services and act within cloud nodes:

	terraform - orchestrate resources at AWS or ar Microsoft Azure

	cloud-init - configure the operating system, files, and applications

The fittings plan is written in YAML, and it
must have multiple documents in it. The first document provides
general configuration parameters for the engine. Subsequent documents
describe the various locations for the fittings.

An example of a minimum fittings plan:

locationId: EU6
regionId: dd-eu

blueprints:

 - myBluePrint:
 domain:
 name: myDC
 ethernet:
 name: myVLAN
 subnet: 10.1.10.0
 nodes:
 - myServer

In this example, the plan is to deploy a single node in the data centre
at Frankfurt, in Europe. The node myServer will be placed in a
network named myVLAN, and the network will be part of a network
domain acting as a virtual data centre, myDC. The blueprint has a
name, myBluePrint, so that it can be handled independently from
other blueprints.

To learn more: The structure and content of fittings file

How to run Plumbery?

	Using plumbery from the command-line
	How do I handle a subset of cloud resources?

	How to plumb only at a selected location?

	How to get help from the command line?

	Using from Docker

	Using Plumbery as a python library

 Copyright 2015-206, the community of plumbery users.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	plumbery 1.0.4 documentation

 	Why plumbery?

Using plumbery from the command-line

Move first to the directory that contains your fittings plan, and then run:

$ python -m plumbery fittings.yaml deploy

Plumbery will load fittings.yaml, then build all blueprints there.

As you can expect, plumbery can be invoked through the entire life cycle of
your fittings:

$ python -m plumbery fittings.yaml build
$ python -m plumbery fittings.yaml start
$ python -m plumbery fittings.yaml prepare

... nodes are up and running here ...

$ python -m plumbery fittings.yaml stop
$ python -m plumbery fittings.yaml destroy

The table below presents succinctly all actions that are supported by plumbery.

	Action
	Description

	deploy
	equivalent to: build + configure + start + prepare

	dispose
	equivalent to: stop + destroy

	build
	create network domains, networks, and nodes

	configure
	adds public IP addresses, NAT and firewall rules

	start
	start nodes

	prepare
	contextualise nodes via ssh and cloud-init

	information
	display information put in fittings plan

	inventory
	produce an inventory of all assets deployed

	ansible
	allow ansible to handle nodes and groups deployed by plumbery

	ping
	check the status of nodes and display network addresses

	stop
	stop nodes

	wipe
	destroy only nodes

	destroy
	destroy nodes and other resources

	polish
	apply all polishers configured in fittings plan

	secrets
	display secrets such as random passwords, etc.

How do I handle a subset of cloud resources?

You are right to ask. A common use case is the immediate creation of a new
group of servers for some developer. You would not like this to interfere
with existing servers. On the other hand, you may really want to destroy a
group of unused servers that just add to the monthly invoices.

In plumbery the full fittings plan is split in multiple blueprints, and you can
handle each of them separately. The most natural way to think about this is to
conceive services as group of servers. For example, the blueprint docker is
actually a cluster of nodes plugged into the same network. Look at the sample
fittings.yaml file to get an idea of what you can put in a blueprint.

Then you can handle a single blueprint independently from the others:

$ python -m plumbery fittings.yaml build docker
$ python -m plumbery fittings.yaml build sql

... and then later ...

$ python -m plumbery fittings.yaml destroy sql
$ python -m plumbery fittings.yaml build mongodb

How to plumb only at a selected location?

By default Plumbery looks at every location mentioned in fittings plan.
Sometimes you may want to limit actions performed to some locations.
For this, mention the name of the target location, prefixed by @.
As an example, here would be the command to build SQL servers only at NA12:

$ python -m plumbery fittings.yaml build sql @NA12

How to get help from the command line?

$ python -m plumbery -h

When you are not sure of directives put in fittings plan, you can ask plumbery
for a dry-run. Use the -s swiftch to keep it safe:

$ python -m plumbery <your_various_args> -s

If some strange behaviour occurs, and you cannot understand what is happening,
then you can use the debug option to get more information:

$ python -m plumbery <your_various_args> -d

Of course the switches -s and -d can be combined if needed.

 Copyright 2015-206, the community of plumbery users.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	plumbery 1.0.4 documentation

 	Why plumbery?

Using from Docker

The plumbery Docker image is the simplest and easiest way to use Plumbery, you can process multiple deployments at the same time, isolate the processes and there is no requirement to install any additional software. to download the plumbery image simply run:

$ docker pull dimensiondataresearch/plumbery

This will download the latest image from https://hub.docker.com/r/dimensiondataresearch/plumbery/

You can then run the image with the following environment variables:

	MCP_USERNAME - your API username

	MCP_PASSWORD - your API password

	SHARED_SECRET - the password for the deployed servers

	FITTINGS - The URL to some fittings file, this can be a HTTP/HTTPS or a FTP/FTPS address. Look in https://github.com/DimensionDataCBUSydney/plumbery-contrib for examples

A fictitious example could be:

$ docker run -e "MCP_USERNAME=bob_smith" -e "MCP_PASSWORD=superPassword!" \
 -e "SHARED_SECRET=superPassword!" \
 -e "FITTINGS=https://raw.githubusercontent.com/DimensionDataCBUSydney/plumbery-contrib/master/fittings/example/first/fittings.yaml" \
 dimensiondataresearch/plumbery

If needed, you have more variables to play with:

	WGET_OPTS can be set for the fetching of the fittings file, the following options are supported:
* “–no-check-certificate” to disable SSL certificate validation
* “–ftp-user=user –ftp-password=password” for FTP credentials
* “–no-passive-ftp” disable FTP passive transfer mode, for use with proxys
* “–http-user=user –http-password=password” for HTTP basic authentication

	OPTS can be set for the plumbery specific options, i.e.:
* “-d” to set debug mode and get more information
* “–safe” to only run the fittings file but not make any changes, for testing

	ACTION is “deploy” by default, but can be set to any of the potential actions for plumbery

 Copyright 2015-206, the community of plumbery users.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	plumbery 1.0.4 documentation

 	Why plumbery?

Using Plumbery as a python library

Since Plumbery is easy to load, you can use it interactively like in the
following example:

>>>from plumbery.engine import PlumberyEngine
>>>PlumberyEngine('fittings.yaml').build_blueprint('beachhead control')
...

If you are writing some code using Plumbery as a library, you would import
the engine and use it, as with any other python module. For example:

from plumbery.engine import PlumberyEngine

engine = PlumberyEngine('fittings.yaml')
engine.do('build', 'docker')
engine.do('start', 'docker')
engine.do('prepare', 'docker')

The source code is available on-line, check the Plumbery repository at GitHub [https://github.com/bernard357/plumbery].

 Copyright 2015-206, the community of plumbery users.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	plumbery 1.0.4 documentation

Using plumbery

	Using plumbery from the command-line
	How do I handle a subset of cloud resources?

	How to plumb only at a selected location?

	How to get help from the command line?

	Using from Docker

	Using Plumbery as a python library

 Copyright 2015-206, the community of plumbery users.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	plumbery 1.0.4 documentation

 	Why plumbery?

Using plumbery from the command-line

Move first to the directory that contains your fittings plan, and then run:

$ python -m plumbery fittings.yaml deploy

Plumbery will load fittings.yaml, then build all blueprints there.

As you can expect, plumbery can be invoked through the entire life cycle of
your fittings:

$ python -m plumbery fittings.yaml build
$ python -m plumbery fittings.yaml start
$ python -m plumbery fittings.yaml prepare

... nodes are up and running here ...

$ python -m plumbery fittings.yaml stop
$ python -m plumbery fittings.yaml destroy

The table below presents succinctly all actions that are supported by plumbery.

	Action
	Description

	deploy
	equivalent to: build + configure + start + prepare

	dispose
	equivalent to: stop + destroy

	build
	create network domains, networks, and nodes

	configure
	adds public IP addresses, NAT and firewall rules

	start
	start nodes

	prepare
	contextualise nodes via ssh and cloud-init

	information
	display information put in fittings plan

	inventory
	produce an inventory of all assets deployed

	ansible
	allow ansible to handle nodes and groups deployed by plumbery

	ping
	check the status of nodes and display network addresses

	stop
	stop nodes

	wipe
	destroy only nodes

	destroy
	destroy nodes and other resources

	polish
	apply all polishers configured in fittings plan

	secrets
	display secrets such as random passwords, etc.

How do I handle a subset of cloud resources?

You are right to ask. A common use case is the immediate creation of a new
group of servers for some developer. You would not like this to interfere
with existing servers. On the other hand, you may really want to destroy a
group of unused servers that just add to the monthly invoices.

In plumbery the full fittings plan is split in multiple blueprints, and you can
handle each of them separately. The most natural way to think about this is to
conceive services as group of servers. For example, the blueprint docker is
actually a cluster of nodes plugged into the same network. Look at the sample
fittings.yaml file to get an idea of what you can put in a blueprint.

Then you can handle a single blueprint independently from the others:

$ python -m plumbery fittings.yaml build docker
$ python -m plumbery fittings.yaml build sql

... and then later ...

$ python -m plumbery fittings.yaml destroy sql
$ python -m plumbery fittings.yaml build mongodb

How to plumb only at a selected location?

By default Plumbery looks at every location mentioned in fittings plan.
Sometimes you may want to limit actions performed to some locations.
For this, mention the name of the target location, prefixed by @.
As an example, here would be the command to build SQL servers only at NA12:

$ python -m plumbery fittings.yaml build sql @NA12

How to get help from the command line?

$ python -m plumbery -h

When you are not sure of directives put in fittings plan, you can ask plumbery
for a dry-run. Use the -s swiftch to keep it safe:

$ python -m plumbery <your_various_args> -s

If some strange behaviour occurs, and you cannot understand what is happening,
then you can use the debug option to get more information:

$ python -m plumbery <your_various_args> -d

Of course the switches -s and -d can be combined if needed.

 Copyright 2015-206, the community of plumbery users.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	plumbery 1.0.4 documentation

 	Why plumbery?

Using from Docker

The plumbery Docker image is the simplest and easiest way to use Plumbery, you can process multiple deployments at the same time, isolate the processes and there is no requirement to install any additional software. to download the plumbery image simply run:

$ docker pull dimensiondataresearch/plumbery

This will download the latest image from https://hub.docker.com/r/dimensiondataresearch/plumbery/

You can then run the image with the following environment variables:

	MCP_USERNAME - your API username

	MCP_PASSWORD - your API password

	SHARED_SECRET - the password for the deployed servers

	FITTINGS - The URL to some fittings file, this can be a HTTP/HTTPS or a FTP/FTPS address. Look in https://github.com/DimensionDataCBUSydney/plumbery-contrib for examples

A fictitious example could be:

$ docker run -e "MCP_USERNAME=bob_smith" -e "MCP_PASSWORD=superPassword!" \
 -e "SHARED_SECRET=superPassword!" \
 -e "FITTINGS=https://raw.githubusercontent.com/DimensionDataCBUSydney/plumbery-contrib/master/fittings/example/first/fittings.yaml" \
 dimensiondataresearch/plumbery

If needed, you have more variables to play with:

	WGET_OPTS can be set for the fetching of the fittings file, the following options are supported:
* “–no-check-certificate” to disable SSL certificate validation
* “–ftp-user=user –ftp-password=password” for FTP credentials
* “–no-passive-ftp” disable FTP passive transfer mode, for use with proxys
* “–http-user=user –http-password=password” for HTTP basic authentication

	OPTS can be set for the plumbery specific options, i.e.:
* “-d” to set debug mode and get more information
* “–safe” to only run the fittings file but not make any changes, for testing

	ACTION is “deploy” by default, but can be set to any of the potential actions for plumbery

 Copyright 2015-206, the community of plumbery users.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	plumbery 1.0.4 documentation

 	Why plumbery?

Using Plumbery as a python library

Since Plumbery is easy to load, you can use it interactively like in the
following example:

>>>from plumbery.engine import PlumberyEngine
>>>PlumberyEngine('fittings.yaml').build_blueprint('beachhead control')
...

If you are writing some code using Plumbery as a library, you would import
the engine and use it, as with any other python module. For example:

from plumbery.engine import PlumberyEngine

engine = PlumberyEngine('fittings.yaml')
engine.do('build', 'docker')
engine.do('start', 'docker')
engine.do('prepare', 'docker')

The source code is available on-line, check the Plumbery repository at GitHub [https://github.com/bernard357/plumbery].

 Copyright 2015-206, the community of plumbery users.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	plumbery 1.0.4 documentation

How to install plumbery?

	Installing plumbery on Linux and Mac OSX

	Installing plumbery on Microsoft Windows

 Copyright 2015-206, the community of plumbery users.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	plumbery 1.0.4 documentation

 	How to install plumbery?

Installing plumbery on Linux and Mac OSX

The setup process on these operating systems is really quick. At the end of the process, you will be in a position to control your infrastructure at any Managed Cloud Control (MCP) of Dimension Data.

Check python

It is likely that your system already has python 2.7. Run this in a terminal window:

$ python -v

If the system complains that the directory does not exist, or that it can not find python, then some extra steps are qrequired. Go to the following address to get more support:

http://python.org/download/releases/2.7/

On the other hand, if you get a proper version number, which is very likely, then you can exit the interpreter and move to the next step:

>>>exit()
>

Install pip

You need pip, a package management system, to install modules related to plumbery.

On Ubuntu and Debian systems, run this command:

$ sudo apt-get install python-pip python-dev

On Red Hat and CentOS systems, do:

$ sudo yum install python-pip python-dev

On Mac OSX, install Homebrew first, then use it for the setup of pip:

$ /usr/bin/ruby -e "$(curl -fsSL https://raw.githubusercontent.com/Homebrew/install/master/install)"
$ brew install python-pip python-dev

To check pip you can get a full list of packages that have been installed on your workstation:

$ pip freeze

Install apache-libcloud

Now that building blocks have put together, we will pull Apache Libcloud and install it locally.
Go the directory where pip executable has been put, and ask it to install Apache Libcloud:

$ pip install apache-libcloud

Install plumbery

Plumbery is a regular python package that has been made available on PyPi [https://pypi.python.org/pypi/plumbery].
So it is a no-brainer to install it with pip:

$ pip install plumbery

Test your installation

The following command loads plumbery and ask it to display its version number:

$ python -m plumbery -v

Set run-time environment variables

By default Plumbery reads credentials and other secrets from the environment
of the computer where it is running.

Following system variables are expected by plumbery:

	MCP_USERNAME - This is the user name that you use to connect to CloudControl

	MCP_PASSWORD - This is the password that you enter in CloudControl

	SHARED_SECRET - This is the admin/root password that is communicated to new servers created over the API.
You should select a long and difficult pass phrase.

If you are running Ubuntu or Mac OSX you could do:

$ nano ~/.bash_profile

and type text like the following:

credentials to access cloud resources from Dimension Data
export MCP_USERNAME='*** your account name here ***'
export MCP_PASSWORD='*** your password here ***'

password to access nodes remotely
export SHARED_SECRET='*** password to access nodes ***'

Then close all terminal windows, and re-open one to ensure that environment variables have been updated.

Run first deployment

Open your preferred text editor to create a new file named fittings.yaml.
Put the following content in it, save the file, and close the editor:

locationId: EU6

blueprints:

 - myBluePrint:
 domain:
 name: myDC
 ethernet:
 name: myVLAN
 subnet: 10.11.12.0
 nodes:
 - myServer:
 appliance: 'Ubuntu'

This is a very limited configuration file, yet it is all you need to deploy a new
server in the data centre of Frankfurt in Germany (Europe).

At this stage you are ready to deploy the configuration file. The most straightforward command:

$ python -m plumbery fittings.yaml deploy

This will display a sequence of messages so that you can monitor what is done, and check that all steps are executed correctly.

If plumbery complains about some missing variable, then close all command shells and re-open a new one so that it gets updated environment variables.

If you hit an issue that you cannot explain, then make plumbery more verbose with the debug flag:

$ python -m plumbery fittings.yaml deploy -d

In the end, keep in mind that resources deployed by plumbery are costing money to someone!
Hopefully, there is a simple way to stop the bill:

$ python -m plumbery fittings.yaml dispose

Congratulations! Plumbery has been installed and tested successfully!

 Copyright 2015-206, the community of plumbery users.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	plumbery 1.0.4 documentation

 	How to install plumbery?

Installing plumbery on Microsoft Windows

The setup process on Microsoft Windows will take you about 15 minutes in total. At the end of the process, you will be in a position to control your infrastructure at any Managed Cloud Control (MCP) of Dimension Data. As a first step you will install python and related stuff, then plumbery itself, then you will configure your MCP credentials and test the full setup.

Install python 2.7

You will need the latest version of the Python 2.7 language, which you can download from
the following address:

http://python.org/download/releases/2.7/

Paste this address in a web browser, download the appropriate package for your machine, and then run it.
For the most common case, which is likely the MSI 64 bits installer for Windows, you may want to use following shortcut:

https://www.python.org/ftp/python/2.7/python-2.7.amd64.msi

The Windows version is provided as an MSI package. To install it manually, just double-click the file. The MSI package format allows Windows administrators to automate installation with their standard tools.

By design, Python installs to a directory with the version number embedded, e.g. Python version 2.7 will install at C:\Python27\, so that you can have multiple versions of Python on the same system without conflicts. Of course, only one interpreter can be the default application for Python file types.

At the end of the process, open a command shell and check the version of python like this:

>cd C:\Python27
>python -v

If the system complains that the directory does not exist, or that it can not find python, then something went wrong during the download or the installation steps.
On the other hand, if you get a proper version number, which is very likely, then you can exit the interpreter and move to the next step:

>>>exit()
>

Typing the full path name for a Python interpreter each time quickly gets tedious, so add the directories for your default Python version to the PATH. Assuming that your Python installation is in C:\Python27\, add this to your PATH:

C:\Python27\;C:\Python27\Scripts\

The second directory receives command files when certain packages are installed, such as pip and others, so it is a very useful addition.

You can do this by running the following in powershell:

[Environment]::SetEnvironmentVariable("Path", "$env:Path;C:\Python27\;C:\Python27\Scripts\", "User")

Alternatively, open the Configuration Panel and look for System settings. Then append the following to the system environment variable PATH and save your change:

C:\Python27\;C:\Python27\Scripts\

Install pip with get-pip.py

Pip is a manager of python packages. We will use it to install various packages that are useful to plumbery, such as Apache Libcloud and others.

Paste the following address in a browser window and save the file locally:

https://bootstrap.pypa.io/get-pip.py

Then in a command shell, ask python to run the downloaded file:

>python <where_file_has_been_downloaded>\get-pip.py

After the installation of pip you can get a full list of packages that have been installed on your workstation:

>pip freeze

Install Microsoft Visual C++ Compiler for Python 2.7

Because some low-level software require local compilation, you will install the Microsoft Visual C++ Compiler for Python 2.7 from following address:

https://www.microsoft.com/en-us/download/confirmation.aspx?id=44266

This will provide you with a MSI file that you have to download and execute on your workstation, like you did for python itself.

Install apache-libcloud

Now that building blocks have put together, we will pull Apache Libcloud and install it locally.
Go the directory where pip executable has been put, and ask it to install Apache Libcloud:

>pip install apache-libcloud

Install ca-bundles.cert

Since plumbery interacts with virtual servers over SSH, it relies on some certificates that have to be installed locally.
As usual with information security, this could be really painful and complicated.
But hopefully some smart guys have bundled common certificates into a single file, that will make our life easier.

Download the bundle from following link:

https://raw.githubusercontent.com/bagder/ca-bundle/master/ca-bundle.crt

Save the file on local disk, then double-click on it. Microsoft Windows will check your intention. Confirm that you want to add the certificates to your system.

Alternatively, you can achieve the same result from PowerShell:

[Environment]::SetEnvironmentVariable("CA_CERTS_PATH", "<location of download of the ca-bundle.crt file>", "Process")

Install plumbery

Plumbery is a regular python package that has been made available on PyPi [https://pypi.python.org/pypi/plumbery].
So it is a no-brainer to install it with pip:

>pip install plumbery

Test your installation

The following command loads plumbery and ask it to display its version number:

>python -m plumbery -v

Set run-time environment variables

By default Plumbery reads credentials and other secrets from the environment
of the computer where it is running.

Following system variables are expected by plumbery:

	MCP_USERNAME - This is the user name that you use to connect to CloudControl

	MCP_PASSWORD - This is the password that you enter in CloudControl

	SHARED_SECRET - This is the admin/root password that is communicated to new servers created over the API.
You should select a long and difficult pass phrase.

You can do this by running the following in powershell:

[Environment]::SetEnvironmentVariable("MCP_USERNAME", "<your user name here>", "Process")
[Environment]::SetEnvironmentVariable("MCP_PASSWORD", "<your password here>", "Process")
[Environment]::SetEnvironmentVariable("SHARED_SECRET", "<a long and difficult pass phrase here>", "Process")

Alternatively, open the Configuration Panel and look for System settings. Then add system environment variables
MCP_USERNAME, MCP_PASSWORD and SHARED_SECRET and save your changes.

Run first deployment

Open your preferred text editor to create a new file named fittings.yaml.
Put the following content in it, save the file, and close the editor:

locationId: EU6

blueprints:

 - myBluePrint:
 domain:
 name: myDC
 ethernet:
 name: myVLAN
 subnet: 10.11.12.0
 nodes:
 - myServer:
 appliance: 'Ubuntu'

This is a very limited configuration file, yet it is all you need to deploy a new
server in the data centre of Frankfurt in Germany (Europe).

At this stage you are ready to deploy the configuration file. The most straightforward command:

>python -m plumbery fittings.yaml deploy

This will display a sequence of messages so that you can monitor what is done, and check that all steps are executed correctly.

If plumbery complains about some missing variable, then close all command shells and re-open a new one so that it gets updated environment variables.

If you hit an issue that you cannot explain, then make plumbery more verbose with the debug flag:

>python -m plumbery fittings.yaml deploy -d

In the end, keep in mind that resources deployed by plumbery are costing money to someone!
Hopefully, there is a simple way to stop the bill:

>python -m plumbery fittings.yaml dispose

Congratulations! Plumbery has been installed and tested successfully!

 Copyright 2015-206, the community of plumbery users.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	plumbery 1.0.4 documentation

The structure and content of fittings file

Keywords used by plumbery

This is the list of keywords that are known by plumbery, and that can be used
in a fittings file. You will find some comprehensive example at the bottom of this page.

	Keyword
	Required
	Description

	apiHost
	yes
	A private API endpoint. See Selecting a data centre

	appliance
	yes
	Name of the image to deploy, .e.g., ‘Ubuntu’. See Selecting an image to deploy

	backup
	no
	Cloud backup configuration. See Configuring cloud backup

	beachhead
	no
	Advanced networking setting. See How to connect plumbery to remote nodes?

	blueprints
	yes
	A collection of blueprints

	cloud-config
	no
	The cloud-config details. See Configure nodes with cloud-config

	cpu
	no
	The number of CPU, or the CPU configuration. See Configuring CPU and memory

	default
	no
	The class of some fittings. See Using defaults

	defaults
	no
	A map of default values. See Using defaults

	description
	no
	One line of text with hashtags, e.g., ‘This is #ubuntu #master node’

	disks
	no
	Storage type and size. See Configuring virtual disks

	domain
	yes
	See Defining network domains

	ethernet
	yes
	See Defining Ethernet networks

	glue
	no
	See Connecting nodes to the Internet and to networks

	information
	no
	A list of strings explaining what the fittings does

	links
	no
	A map, including ‘documentation’ and ‘credit’ as possible values

	listeners
	no
	A collection of listener objects, describing load balancers settings

	locationId
	yes
	Target data centre, e.g., ‘EU6’. See Selecting a data centre

	memory
	no
	Amount of RAM in gigabytes. See Configuring CPU and memory

	monitoring
	no
	Monitoring plan, either essentials or advanced. No default

	nodes
	yes
	A collection of node objects, describing the servers to be deployed

	parameters
	no
	Settings that can be provided externally to plumbery

	regionId
	no
	Identify API endpoint, e.g., ‘dd-ap’. See Selecting a data centre

	running
	no
	If set to always, then plumbery cannot delete the fittings

Multiple documents in one fittings file

YAML allows for multiple documents to be assembled in one fittings plan.
The separation of documents is done with three dashes at the beginning of a line.
The first document is reserved for plumbery parameters, default settings, etc.
Therefore the description of blueprints starts on the second document:

information:
 - "NFS client and server at two different data centres"

blueprints:
 ...

Deploying in multiple geographies

Since Plumbery processes each document independently, it is really easy to configure
a deployment that spans multiple data centres, like in the following example:

information:
 - "Multi-Geography deployment example"

regionId: dd-eu
locationId: EU6
blueprints:
 ...

regionId: dd-na
locationId: NA9
blueprints:
 ...

Combining private and public clouds in a deployment

Private MCPs are set using the apiHost parameter, you must also include the datacenter ID of the cloud as the locationId.
You can then include another document(s) with the public cloud fittings:

information:
 - "Multi-Geography deployment example"

apiHost: my-private-cloud.com
locationId: MY1
blueprints:
 ...

regionId: dd-na
locationId: NA9
blueprints:
 ...

Environment variables

Environment variables are those set on the system that is running plumbery.
If you mention an environment variable in a fitting plan, it will be transmitted and used on the target nodes.
You can think about it as a convenient way to share configuration across nodes created by plumbery.
On the other end, you may take the risk to expose sensitive information outside your computer.

For example, let say that you deploy a virtual machine that will talk to the Cisco Spark API.
Before this, you registered to Cisco developer eco-system and got a token that has been saved in CISCO_SPARK_TOKEN, on your workstation. The most straightforward approach would be to just copy this to the target virtual machine.
If this new machine will run Ubuntu, you could say:

write_files:

 - path: /etc/profile.d/cisco_spark.sh
 permissions: "0755"
 content: |
 #!/bin/sh
 export CISCO_SPARK_TOKEN="{{ environment.CISCO_SPARK_TOKEN }}"

During the processing of the fitting plan, plumbery will replace the variable
with the actual value of the token on your machine.
Therefore the configuration file actually transmitted to the target machine could be like the following:

write_files:

 - path: /etc/profile.d/cisco_spark.sh
 permissions: "0755"
 content: |
 #!/bin/sh
 export CISCO_SPARK_TOKEN="YWM2OEG4OGItNTQ5YS00MDU2LThkNWEtMJNkODk3ZDZLOGQ0OVGlZWU1NmYtZWyY"

When the target virtual machine will boot, the token will be made available in every user sessions.

Please note that this is probably a very lazy approach, that does induce security risks.
In the situation described before, you should get a separate token for the new
server, instead of sharing a secret from your own machine. You have been warned.

Dynamic variables

Dynamic variables reflect values assigned by the cloud platform such as network addresses.

	Variable
	Example
	Description

	Self-name
	{{ node.name }}
	Name of the current node, e.g., Server1

	Self private address
	{{ node.private }}
	Private IPv4 address, e.g., 10.11.2.3

	Self public address
	{{ node.public }}
	Public IPv4 address, e.g., 8.9.10.11 – requires the directive ‘internet’ to assign an address

	Self IPv6 address
	{{ node.ipv6 }}
	IPv6 address defined for the node

	Node private address
	{{ server1.private }}
	Private IPv4 address of server named server1

	Node public address
	{{ server1.public }}
	Public IPv4 address – requires the directive ‘internet’ as well

	Node IPv6 address
	{{ host357.ipv6 }}
	IPv6 address defined for the node named host357

Using dynamic variables

Plumbery will set pre-defined attributes when asked, for example, a private IPv4 address to a node.
This is working great, and all you have to do for this is document such attributes in a fittings plan.

However in many situations you will handle information that is either created dynamically, or
that is declared outside a fittings plan.

Some examples:

	IPv6 addresses assigned automatically by the platform

	IPv4 addresses selected dynamically from subnets

	random password used for the setup of a MySQL server

	SSH keys to be created for a specific deployment

This is where you can use templating capabilities of plumbery directly in the fittings plan.

To illustrate the case we will consider a deployment with two nodes deployed in different data centres.
The nodes have to communicate over the IPv6 back-end infrastructure that connects all data centres
deployed by Dimension Data. In other terms, the IPv6 address of node-a has to be given to node-b, and
the IPv6 address of node-b has to be given to node-a.

As you can expect, the most straightforward implementation relies on the file /etc/hosts of both nodes.
This is the natural place where names and addresses can be mapped. In plumbery,
we would start with something like the following:

write_files:

 # map IPv6 addresses with names
 #
 - path: /etc/hosts
 content: |
 {{ node-a.ipv6 }} node-a
 {{ node-b.ipv6 }} node-b

Before the content of /etc/hosts is actually sent to the nodes, plumbery looks for
references to dynamic variables, and replaces them with actual values. For example:

write_files:

 # map IPv6 addresses with names
 #
 - path: /etc/hosts
 content: |
 2001:0db8:85a3:0:0:8a2e:370:7334 node-a
 2001:db8:85a3:8d3:1319:8a2e:370:7348 node-b

Complete example

information:
 - "Let's Chat server, self-hosted chat for private teams"

parameters:

 locationId:
 information:
 - "the target data centre for this deployment"
 type: locations.list
 default: EU6

links:
 documentation: https://github.com/DimensionDataCBUSydney/plumbery-contrib/tree/master/fittings/collaboration/letschat
 credit: https://mborgerson.com/setting-up-lets-chat-on-ubuntu

defaults:

 cloud-config:

 ssh_keys:
 rsa_private: |
 {{ key.rsa_private }}
 rsa_public: "{{ key.rsa_public }}"

 users:
 - default

 - name: ubuntu
 sudo: 'ALL=(ALL) NOPASSWD:ALL'
 ssh-authorized-keys:
 - "{{ key.rsa_public }}"
 - "{{ local.rsa_public }}"

 disable_root: true
 ssh_pwauth: false

locationId: "{{ parameter.locationId }}"

blueprints:

 - letschat:

 domain:
 name: myDomain
 ipv4: 2

 ethernet:
 name: myNetwork
 subnet: 10.0.0.0

 nodes:
 - letschat01:

 description: "#chat server #ubuntu"

 information:
 - "this is the Let's Chat server for our team"
 - "browse http://{{ node.public }}:5000/ to enter conversations"

 appliance: 'Ubuntu 14'
 cpu: 8
 memory: 32

 disks:
 - 1 50 standard

 glue:
 - internet 22 5000

 monitoring: essentials

 cloud-config:
 hostname: "{{ node.name }}"

 packages:
 - nodejs
 - npm
 - nodejs-legacy
 - mongodb
 - mongodb-server
 - git

 runcmd:

 - echo "===== Growing LVM with added disk"
 - pvcreate /dev/sdb
 - vgextend rootvol00 /dev/sdb
 - lvextend -l +100%FREE /dev/mapper/rootvol00-rootlvol00
 - resize2fs /dev/mapper/rootvol00-rootlvol00

 - echo "===== Handling ubuntu identity"
 - cp -n /etc/ssh/ssh_host_rsa_key /home/ubuntu/.ssh/id_rsa
 - cp -n /etc/ssh/ssh_host_rsa_key.pub /home/ubuntu/.ssh/id_rsa.pub
 - chown ubuntu:ubuntu /home/ubuntu/.ssh/*

 - echo "===== Installing Let's Chat"
 - cd /home/ubuntu
 - git clone https://github.com/sdelements/lets-chat.git
 - cd lets-chat
 - npm install
 - cp settings.yml.sample settings.yml
 - sed -i "/host:/s/'[^']*'/'{{ node.name }}'/" settings.yml

 - echo "===== Starting the server"
 - npm start

 Copyright 2015-206, the community of plumbery users.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	plumbery 1.0.4 documentation

How to contribute to Plumbery?

Contributions are welcome, and they are greatly appreciated! Every
little bit helps, and credit will always be given.

You are not a developer? We are glad that you are involved

You can contribute in many ways:

	submit feedback

	report bugs

	write documentation

	fix bugs

	implement features

Submit Feedback

The best way to send feedback is to file an issue. The place to go is
Plumbery issues at GitHub [https://github.com/bernard357/plumbery/issues]. There you can check if your feedback is new, or
if you can align with others.

If you are proposing a feature:

	Explain in detail how it would work.

	Keep the scope as narrow as possible, to make it easier to implement.

	Remember that this is a volunteer-driven project, and that contributions
are welcome :)

Report Bugs

Have you identified some bug? Thanks to go to Plumbery issues at GitHub [https://github.com/bernard357/plumbery/issues].
This is the place where issues are documented, discussed, and fixed. We really
value your time and effort to report bugs.

If you are reporting a bug, please include:

	Your operating system name and version.

	Any details about your local setup that might be helpful in troubleshooting.

	Detailed steps to reproduce the bug.

Write Documentation

Plumbery could always use more documentation, whether as part of the
official plumbery docs, in docstrings, or even on the web in blog posts,
articles, and such.

Fix Bugs

Look through the GitHub issues for bugs. Anything tagged with “bug”
is open to whoever wants to implement it.

Implement Features

Look through the GitHub issues for features. Anything tagged with “feature”
is open to whoever wants to implement it.

Ready to contribute? Here’s how to set up Plumbery for local development

	Fork the plumbery repo on GitHub [https://github.com/]. If you do not have an account there
yet, you have to create one, really. This is provided for free, and will
make you a proud member of a global community that matters. Once you have
authenticated, visit the Plumbery repository at GitHub [https://github.com/bernard357/plumbery] and click
on the Fork link.

	Clone your fork locally:

$ git clone git@github.com:your_name_here/plumbery.git

	Install your local copy into a virtualenv. Assuming you have virtualenvwrapper
installed, this is how you set up your fork for local development:

$ mkvirtualenv plumbery
$ cd plumbery/
$ python setup.py develop

	Create a branch for local development:

$ git checkout -b name-of-your-bugfix-or-feature

Now you can make your changes locally.

	When you’re done making changes, check that your changes pass flake8 and the tests:

$ make lint
$ make test
$ make coverage

	Commit your changes and push your branch to GitHub:

$ git add .
$ git commit -m "Your detailed description of your changes."
$ git push origin name-of-your-bugfix-or-feature

	Submit a pull request through the GitHub website.

Pull Request Guidelines

Before you submit a pull request, check that it meets these guidelines:

	The pull request should include tests.

	If the pull request adds functionality, the docs should be updated. Put
your new functionality into a function with a docstring, and add the
feature to the list in README.rst.

	Check Plumbery continuous integration at Travis CI [https://travis-ci.org/bernard357/plumbery]
and make sure that the tests pass there.

 Copyright 2015-206, the community of plumbery users.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	plumbery 1.0.4 documentation

History

1.0.4 (2016-12-20)

	Fix issues #41 and #48 on SSH keys

	Reference and use external SSH keys to facilitate teamwork

	Allow for reservation of private IPv4 addresses on a VLAN

	Complete rewrite of load-balancing code

	Progress on epic topics #36 and #38

	Remove dependency to cryptodome

	Provide comprehensive setup instructions for Windows users

	Add EU9 to the list of available MCP

	Improve inventory files given to ansible

	Pass Travis CI

	4503 python statements

	Test coverage 59%

1.0.2 (2016-11-6)

	Improve inventories for ansible

	Add environment variables to templates

	Improve tests of parameters

	Introduce package-level logger

	Make reboot stronger against transient states

	Documentation improvements

	Passing Travis CI

	4252 python statements

	Test coverage 59%

1.0.1 (2016-10-14)

	Better report on errors

	Add private IP addresses to the inventory prepared for Ansible

	Documentation improvements

1.0.0 (2016-07-15)

	Use libcloud 1.1.0

	Parameters are now prepended with the keyword parameter instead of appended (Breaking change)

	Documentation improvements

0.9.9 (2016-06-10)

	Parse Terraform logging correctly (FIX)

0.9.8 (2016-06-10)

	Added error logs to multi-clouds

0.9.7 (2016-06-08)

	Support for Python 3

0.9.6 (2016-06-06)

	Added multicloud support with Hashicorp terraform, supports parameters being passed to TF vars files directly

	Add colored logging

	Multiple code fixes

	Adapt code for python 3 compatibility

	Passing Travis CI for python 2.7, but not yet for python 3

0.9.5 (2016-05-28)

	35 reference configurations are now provided in separate plumbery-contrib

	Passing Travis CI

	3787 python statements

	Test coverage 53%

0.9.4 (2016-05-27)

	Adapt Dockerfile to Windows targets

	Fix various bugs for windows - UAT for windows complete.

0.9.3 (2016-05-27)

	Added pretty logging

0.9.2 (2016-05-27)

	Fixed bugs around private MCPs

0.9.1 (2016-05-26)

	Added validation phase to all post-deploy configuration tasks

0.9.0 (2016-05-25)

	Added initial windows polisher for command execution

0.8.1 (2016-05-23)

	Remove windows line endings from unix shell fixtures.

	Accept static IPv4 settings

	Support ICMP, TCP, UDP and IP in firewall definitions

	Add alias ‘primary’ for main NIC network

	Upgrade VMware tools automatically

	Fix calls to API 2.2

	Add the ability to read fittings plan from stdin

	Add entry point to launch plumbery from command line

0.8.0 (2016-04-13)

	Add the capability to backup nodes

0.7.0 (2016-04-06)

	Rename ‘spit’ to ‘configure’

0.6.0 (2016-03-15)

	Added private MCP support (compute only)

	Updated Dockerfile to support parameters

	Set ‘finalize’ (or ‘finalise’ for the English) as the new phrase for ‘polish’

	Removed coordinate and city lookups (we are adding 40 MCPs this year, I really don’t want to maintain that list!)

0.5.0 (2016-03-13)

	Handover project governance to Dimension Data R&D team

	26 tutorials are now provided in separate plumbery-contribs project at GitHub

	Introduce deployment parameters (location, domain name, network name, ...)

	Add tutorial on log consolidation (ELK)

	Add tutorial on disk orchestration (standard, high-performance, economy)

	Secure SSH communications in most tutorials (no password, no root access)

	Add virtual storage to many tutorials

	Derive regionId from locationId to streamline fittings plan

	Add action ‘refresh’ to ease iterations in fittings plan

	Add option -p to load parameters from the command line

	Accept web links for fittings plan and for parameters file

	Restructure code to accomodate for more complex data processing

	Fix multiple bugs and errors

	Augment test coverage

	Improve information provided in debug mode

	Passing Travis CI

	3286 python statements

	Test coverage 53%

0.4.3 (2016-02-28)

	A total of 24 various tutorials is provided

	Enhance tutorials on Docker and Kubernetes with virtual storage, SSH keys, class-based definition, and updated tutorial

	Add tutorial on iTop, an open source solution for ITIL management

	Add the management of virtual disks, including tiered storage

	Add tutorial showing partitioning, formatting and mounting of virtual disks

	Enhance the usage documentation page

	Accept pseudo-target of blueprints

	Add classes of nodes to streamline large deployments

	Include the library of Customer Images

	Normalize information reported by the ‘inventory’ command

	Expose geolocalisation information to nodes if needed

	Generalize the usage of ‘information:’ to support active documentation of fittings plans

	Put fittings plan in context with the new ‘links:’ directive

	Reduce requirements in fittings plan passed as a Python dictionary

	Add power off as secondary mechanism to stop nodes, when graceful shutdown is not enough

	Allow for CPU and memory dynamic reconfiguration

	Add option -s to run plumbery in safe mode from the command line

	Report on time spent in the cloud while working

	Fix multiple bugs and errors

	Augment test coverage

	Improve information provided in debug mode

	Passing Travis CI

	3121 python statements

	Test coverage 50%

0.4.2 (2016-02-14)

	Add tutorials on Docker, Kubernetes, Docker Swarm – DevOps

	Add tutorial to create a Stackstorm server – DevOps too

	Add tutorial to create a swarm of pingers with MQTT and Kibana – IOT is coming

	A total of 23 various tutorials is provided

	Enhance the documentation accordingly

	Enhance the documentation page on cloud-config

	Add help for Windows users

	Add the generation of uuid when needed (ceph cluster)

	Add the capability to assign public IPv4 when needed (automatic mode)

	Expand information reported by the ‘inventory’ command

	Now support settings for a proxy for all interactions with API endpoints

	Restructure code and improve performance with better cache

	Fix multiple bugs and errors

	Improve information provided in debug mode

	Passing Travis CI

	2769 python statements

	Test coverage 48%

0.4.1 (2016-01-24)

	Provision of an advanced tutorial that demonstrates most interesting features

	A total of 18 various tutorials is provided

	Enhance the documentation accordingly

	Leverage cloud-init with global directives shared by all nodes

	Extend dynamic variables to random, on-demand RSA keys

	Enforce password-free communications, and ipv6 communications

	Add actions ‘wipe’ and ‘secrets’

	Restructure code and consolidate functions

	Fix multiple bugs and errors

	Expand information provided in debug mode

	Passing Travis CI

	2717 python statements

	Test coverage 47%

0.4.0 (2016-01-17)

	Add cloud-init for node contextualisation

	Inject dynamic variables (e.g., node addresses) to node contextualisation

	Generate and store random secrets for secured node contextualisation

	Enhance usage page in the documentation

	Add a full pack of tutorials in the on-line documentation

	Add actions ‘deploy’ and ‘dispose’ to streamline usage

	Add polishers ‘ping’ and ‘information’

	Restructure code and consolidate functions

	Fix multiple bugs and errors

	Expand information provided in debug mode

	Passing Travis CI

	Test coverage 47%

0.3.4 (2016-01-06)

	Add tutorials to the documentation

	Fix some errors

	Expand information provided in debug mode

	Passing Travis CI

	Test coverage 39%

0.3.3 (2015-12-31)

	Create load balancers with pools of nodes

	Streamline messages in safe mode

	Options to run in debug or in quiet mode

	Load fittings plan as a string

	Limit plumbing to some locations if needed

	Make flake8 as happy as possible (PEP8 enforcement)

	Add software documentation for polishers ansible, inventory and rub

	Split software documentation in multiple pages

	Add a first documented use case to the on-line documentation

	Restructure code of the core engine

	Passing Travis CI

	Test coverage 39%

0.3.2 (2015-12-23)

	Run plumbery from the command-line

	Accept custom polisher from the command line too

	Release the first comprehensive on-line documentation at ReadTheDocs

	Illustrate new features in one demonstration fittings plan (the Gigafox project)

	Consolidate sample scripts and python programs for demonstrations

	Allow multiple network interfaces per node

	Reserve and manage pools of public IPv4 addresses

	Add address translation to nodes equipped with public IPv4 addresses

	Add firewall rules for nodes directly visible from the internet

	Wait for nodes to be deployed before polishing them

	Add new strategies to communicate with nodes over the network

	Fix the usage of puppet for Apache nodes

	Improve reporting messages

	Enhance code documentation

	Fix behaviour on multiple abnormal conditions

	Passing Travis CI

	Test coverage 40%

0.2.4 (2015-12-13)

	Extend coverage of the Gigafox project

	Add monitoring to nodes created

	Run polisher ‘spit’ right after build to finalise setup of nodes

	Produce inventory with polisher of same name

	Introduce puppet manifests to polisher ‘rub’

	Add file copy to remote nodes

	Introduce basement blueprints

	Improve reporting messages

	Enhance code documentation

	Fix behaviour on abnormal situations

	Passing Travis CI

	Test coverage 46%

0.2.3 (2015-12-07)

	Introduce Gigafox project, to demonstrate deployment across multiple places

	Create firewall rules to allow traffic between networks

	Cache information to save on API calls and to accelerate the processing

	Improve the state engine

	Passing Travis CI

	Test coverage 48%

0.2.2 (2015-12-05)

	Use ipv6 when possible to connect to remote nodes

	Manual tests to improve usage on specific conditions, e.g., against MCP 1.0

	Label expansion to facilitate node handling, e.g., mongo[1..20]

	Allow for destruction of networks and of domain networks

	Passing Travis CI

	Test coverage 55%

0.2.1 (2015-12-02)

	Code refactoring into a new module for nodes

	fake8 complains only about long lines and line termination

	Passing Travis CI

	Test coverage 59%

0.2.0 (2015-11-29)

	Allow for node bootstrapping via SSH

	Push SSH public key

	Update Linux packages

	Install Docker

	Provide an inventory of running nodes

	Build inventory for ansible

	Extension mechanism called polishers

	Add demonstration scripts related to polishers

	A lot of docstring has been added

	fake8 complains only about long lines and line termination

	Passing Travis CI

	Test coverage 59%

0.1.2 (2015-11-27)

	First pull request fully processed

	Docstring for all modules

	Passing Travis CI

	Test coverage 62%

0.1.0 (2015-11-20)

	First release on PyPI.

 Copyright 2015-206, the community of plumbery users.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	plumbery 1.0.4 documentation

plumbery package

Subpackages

	plumbery.actions package
	Submodules

	Module contents

	plumbery.fittings package
	Submodules
	plumbery.fittings.dummy module

	Module contents

	plumbery.polishers package
	Submodules

	plumbery.polishers.ansible module

	plumbery.polishers.configure module

	plumbery.polishers.information module

	plumbery.polishers.inventory module

	plumbery.polishers.ping module

	plumbery.polishers.prepare module

	Module contents

Submodules

	plumbery.action module

	plumbery.bootstrap module

	plumbery.engine module

	plumbery.exception module

	plumbery.facility module

	plumbery.fitting module

	plumbery.infrastructure module

	plumbery.nodes module

	plumbery.plogging module

	plumbery.polisher module

	plumbery.terraform module

	plumbery.text module

	plumbery.util module

Module contents

Are you looking for a cloud plumber? We hope this one will be useful to you

 Copyright 2015-206, the community of plumbery users.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	plumbery 1.0.4 documentation

 	plumbery package

plumbery.actions package

Submodules

Module contents

 Copyright 2015-206, the community of plumbery users.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	plumbery 1.0.4 documentation

 	plumbery package

plumbery.fittings package

Submodules

	plumbery.fittings.dummy module

Module contents

 Copyright 2015-206, the community of plumbery users.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	plumbery 1.0.4 documentation

 	plumbery package

 	plumbery.fittings package

plumbery.fittings.dummy module

 Copyright 2015-206, the community of plumbery users.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	plumbery 1.0.4 documentation

 	plumbery package

plumbery.polishers package

Submodules

plumbery.polishers.ansible module

plumbery.polishers.configure module

plumbery.polishers.information module

plumbery.polishers.inventory module

plumbery.polishers.ping module

plumbery.polishers.prepare module

Module contents

 Copyright 2015-206, the community of plumbery users.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	plumbery 1.0.4 documentation

 	plumbery package

plumbery.action module

 Copyright 2015-206, the community of plumbery users.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	plumbery 1.0.4 documentation

 	plumbery package

plumbery.bootstrap module

	
plumbery.bootstrap.download_file(url, output_dir)[source]

	

	
plumbery.bootstrap.download_manifest(url, output_dir)[source]

	

	
plumbery.bootstrap.main(args)[source]

	

	
plumbery.bootstrap.parse_args(args)[source]

	

 Copyright 2015-206, the community of plumbery users.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	plumbery 1.0.4 documentation

 	plumbery package

plumbery.engine module

 Copyright 2015-206, the community of plumbery users.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	plumbery 1.0.4 documentation

 	plumbery package

plumbery.exception module

	
exception plumbery.exception.ConfigurationError(message)[source]

	Bases: plumbery.exception.PlumberyException

	
exception plumbery.exception.PlumberyException(message)[source]

	Bases: exceptions.Exception

 Copyright 2015-206, the community of plumbery users.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	plumbery 1.0.4 documentation

 	plumbery package

plumbery.facility module

 Copyright 2015-206, the community of plumbery users.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	plumbery 1.0.4 documentation

 	plumbery package

plumbery.fitting module

 Copyright 2015-206, the community of plumbery users.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	plumbery 1.0.4 documentation

 	plumbery package

plumbery.infrastructure module

 Copyright 2015-206, the community of plumbery users.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	plumbery 1.0.4 documentation

 	plumbery package

plumbery.nodes module

 Copyright 2015-206, the community of plumbery users.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	plumbery 1.0.4 documentation

 	plumbery package

plumbery.plogging module

 Copyright 2015-206, the community of plumbery users.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	plumbery 1.0.4 documentation

 	plumbery package

plumbery.polisher module

 Copyright 2015-206, the community of plumbery users.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	plumbery 1.0.4 documentation

 	plumbery package

plumbery.terraform module

 Copyright 2015-206, the community of plumbery users.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	plumbery 1.0.4 documentation

 	plumbery package

plumbery.text module

 Copyright 2015-206, the community of plumbery users.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 previous |

 	plumbery 1.0.4 documentation

 	plumbery package

plumbery.util module

 Copyright 2015-206, the community of plumbery users.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	plumbery 1.0.4 documentation

 Python Module Index

 p

 			

 		
 p	

 	[image: -]
 	
 plumbery	

 	
 	
 plumbery.actions	

 	
 	
 plumbery.bootstrap	

 	
 	
 plumbery.exception	

 	
 	
 plumbery.fittings	

 	
 	
 plumbery.polishers	

 	
 	
 plumbery.polishers.base	

 Copyright 2015-206, the community of plumbery users.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	plumbery 1.0.4 documentation

Index

 C
 | D
 | M
 | N
 | P
 | V

C

 	

 	ConfigurationError

 	

 	configure() (plumbery.polishers.base.NodeConfiguration method)

D

 	

 	deconfigure() (plumbery.polishers.base.NodeConfiguration method)

 	download_file() (in module plumbery.bootstrap)

 	

 	download_manifest() (in module plumbery.bootstrap)

M

 	

 	main() (in module plumbery.bootstrap)

N

 	

 	NodeConfiguration (class in plumbery.polishers.base)

P

 	

 	parse_args() (in module plumbery.bootstrap)

 	plumbery (module)

 	plumbery.actions (module)

 	plumbery.bootstrap (module)

 	plumbery.exception (module)

 	

 	plumbery.fittings (module)

 	plumbery.polishers (module)

 	plumbery.polishers.base (module)

 	PlumberyException

V

 	

 	validate() (plumbery.polishers.base.NodeConfiguration method)

 Copyright 2015-206, the community of plumbery users.
 Created using Sphinx 1.3.5.

 _images/yamllint.png
YAML Lint

Paste in your YAML and click "Go" - we'll tell you if it's valid or not, and give you a nice clean UTF-8 version of
it. Optimized for Ruby.

Go

bootcmd:
- "echo \"debconf debconf/frontend select noninteractive\" | debconf-set-selections"
- "echo \"libssl1.0.0 libssll.0.0/restart-services string ssh ntp\" | debconf-set-sele
- "echo \"libssll.0.0:amd64 libssll.0.0/restart-services string ssh ntp\" | debconf-se

disable_root: false
hostname: kurento
packages:
- ntp
- git
- debconf-utils
- gnutls-bin
runcmd:
- "echo \"===== Growing LVM with added disk\""
- "pvcreate /dev/sdb"
- "vgextend rootvol00 /dev/sdb"
- "lvextend -1 +100%FREE /dev/mapper/rootvol00-rootlvol00"
- "resize2fs /dev/mapper/rootvol00-rootlvol00"
- "echo \"===== Handling ubuntu identity\""
- "cp -n /etc/ssh/ssh_host_rsa_key /home/ubuntu/.ssh/id_rsa"

_images/tutorial.mqtt.pinger.swarm.kibana.png

tutorial.sql.master.slave.html

 Navigation

 		
 index

 		
 modules |

 		plumbery 1.0.4 documentation »

Master and slave MySQL databases in different locations

In this use case a master database server and a slave database server are
deployed in different locations. The back-end IPv6 infrastructure
provided by Dimension Data is used to replicate data continuously and securely.

As shown below, plumbery provides a streamlined definition of the overall
solution, that encompasses servers location, the networking infrastructure,
the security of information flows, but also the contextualisation of nodes
and the small but important final brushes that are making a solution really
appealing.

When starting from scratch, it takes about 15 minutes to deploy the fittings
below. About half of it is related to the deployment at cloud services from
Dimension data. The other half is incurred by cloud-init in the contextualisation
of nodes, the software part of the solution.
After that time, you can connect to the cluster and use it for real.

Requirements for this use case

		Deploy a master database in one data centre

		Deploy a slave database in another data centre

		Create a Network Domain at each location

		Create an Ethernet network at each location

		Allow IPv6 traffic from the master network to the slave network

		Deploy a SQL server at each location

		Add servers to the automated monitoring dashboard

		Assign public IPv4 addresses to each server

		Add address translation to ensure SSH access to the nodes from the internet

		Add firewall rule to accept TCP traffic on port 22 (ssh)

		Update etc/hosts to bind IPv6 addresses to host names

		Manage keys to suppress passwords in SSH connections

		Install MySQL at each node

		Configure the master database

		Configure the slave database

		Populate the master database

		Dump the master database and load it at the slave node

		Start the replication from the master to the slave

Fittings plan

The plan below demonstrates multiple interesting building blocks:

		Addition of public IPv4 and firewall rules to control access to
selected servers

		Configuration of the firewall to open communications across data centres

		Automatic registration to the monitoring services provided by Dimension Data

		Management of SSH keys to enable secured communications without passwords

		Update of etc/hosts with IPv6

		Easy templating of configuration files transmitted to nodes

		Handy generation and management of secrets required at various places

		rsync on top of ipv6 to manage heavy communications between servers

		User documentation of the infrastructure is put directly in the fittings plan

Download this fittings plan [https://github.com/bernard357/plumbery/blob/master/demos/sql.master.slave.yaml] if you want to hack it for yourself. This is part of the demonstration
directory of the plumbery project [https://github.com/bernard357/plumbery/tree/master/demos] at GitHub. Alternatively, you can copy the
text below and put it in a text file named fittings.yaml.

		 1
 2
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423

 defaults:

 # these directives apply to all nodes created by plumbery
 #
 cloud-config:

 # this key will be randomly generated by plumbery on first action on this
 # fittings plan, and remembered afterwards
 #
 ssh_keys:
 rsa_private: |
 {{ key.rsa_private }}
 rsa_public: "{{ key.rsa_public }}"

 # let cloud-init do its job depending on target operating system
 #
 users:
 - default

 # for ubuntu nodes, ensure that account ubuntu can do everything
 #
 - name: ubuntu
 sudo: 'ALL=(ALL) NOPASSWD:ALL'
 ssh-authorized-keys:
 - "{{ key.rsa_public }}"
 - "{{ local.rsa_public }}"

 # configure SSH keys for the account root
 #
 - name: root
 ssh-authorized-keys:
 - "{{ key.rsa_public }}"
 - "{{ local.rsa_public }}"

 # plumbery uses the account root to rub nodes
 #
 disable_root: false

 # plumbery can use ssh certificate to avoid passwords
 #
 ssh_pwauth: false

 locationId: AU10
 regionId: dd-au

 blueprints:

 # the blueprint 'sql' is spread over two different locations: @AU10 and @AU11
 #
 - sql:

 # reservation of 2 public ipv4 addresses to be given to nodes afterwards
 #
 domain:
 name: VDC1
 description: "Demonstration of SQL replication"
 ipv4: 2

 # firewall is configured to accept ipv6 traffic from the slave
 #
 ethernet:
 name: databases
 subnet: 10.0.0.0
 accept:
 - AU11::databases

 nodes:
 - masterSQL:

 # plumbery turns hashtags to groups in the inventory
 #
 description: "#master #database #sql server #ubuntu"

 # instructions to be displayed to end user
 #
 information:
 - "this is the SQL Master server"
 - "check replication with:"
 - "$ ssh ubuntu@{{ masterSQL.public }}"
 - "$ mysql"
 - "> show master status\\G"
 - "check data with:"
 - "> use db01;"
 - "> select * from persons;"
 - "create a record with:"
 - "> insert into persons (name) values ('<some name here>');"
 - "check change in GTID:"
 - "> show master status\\G"

 # you could use 'CentOS' or other label from CloudControl library
 #
 appliance: 'Ubuntu 14'

 # computing power
 #
 cpu: 8
 memory: 32

 # add NAT to the internet and open firewall for ssh
 #
 glue:
 - internet 22

 # add the node to the monitoring dashboard
 #
 monitoring: essentials

 # plumbery provides following these directives to cloud-init
 #
 cloud-config:

 # change the hostname to our definition
 #
 hostname: "{{ node.name }}"

 # provide a random password to mysql server -- this is remembered of course
 #
 bootcmd:
 - echo "mysql-server mysql-server/root_password password {{ mysql_root.secret }}" | sudo debconf-set-selections
 - echo "mysql-server mysql-server/root_password_again password {{ mysql_root.secret }}" | sudo debconf-set-selections

 # install packages -- here, time synchronization and mysql
 #
 packages:
 - ntp
 - mysql-server-5.6

 # write various files
 #
 write_files:

 # a script in awk to update the /etc/hosts file
 #
 - path: /root/hosts.awk
 content: |
 #!/usr/bin/awk -f
 /^{{ masterSQL.private }}/ {next}
 /^{{ masterSQL.ipv6 }}/ {next}
 /^{{ AU11::slaveSQL.ipv6 }}/ {next}
 {print}
 END {
 print "{{ masterSQL.private }} masterSQL"
 print "{{ masterSQL.ipv6 }} masterSQL"
 print "{{ AU11::slaveSQL.ipv6 }} slaveSQL"
 }

 # a script in sed to change the configuration of mysql
 #
 - path: /root/my.cnf.sed
 content: |
 #!/usr/bin/sed
 /bind-address/s/127.0.0.1/::/
 s/#server-id/server-id/
 /server-id/s/= 1/= 123/
 s/#log_bin.*/log-bin = mysql-bin/
 /max_binlog_size/a log-slave-updates\nbinlog_format = MIXED\nenforce-gtid-consistency\ngtid-mode = ON
 /enforce-gtid-consistency/s/^#//
 /gtid-mode/s/^#//
 $!N; /^\(.*\)\n\1$/!P; D

 # SQL directives to configure replication on master
 #
 - path: /root/master_setup.sql
 content: |
 GRANT REPLICATION SLAVE ON *.*
 TO 'replicator'@'slaveSQL'
 IDENTIFIED BY '{{ replicator.secret }}';
 FLUSH PRIVILEGES;
 FLUSH TABLES WITH READ LOCK;

 # SQL directives to create some content in the database
 #
 - path: /root/master_db.sql
 content: |
 CREATE DATABASE db01;
 USE db01;
 CREATE USER 'dbuser'@'localhost' IDENTIFIED BY '{{ dbuser.secret }}';
 GRANT ALL PRIVILEGES ON db01.* TO 'dbuser'@'localhost';
 CREATE TABLE persons (id INT AUTO_INCREMENT,
 name VARCHAR(30),
 datum TIMESTAMP DEFAULT CURRENT_TIMESTAMP,
 PRIMARY KEY(id));
 INSERT INTO persons(name) VALUES ('Marko');
 INSERT INTO persons(name) VALUES ('John');
 INSERT INTO persons(name) VALUES ('Eric');
 INSERT INTO persons(name) VALUES ('Clive');
 INSERT INTO persons(name) VALUES ('Maria');

 # allow the ubuntu account to handle the database easily
 #
 - path: /home/ubuntu/.my.cnf
 permissions: '0400'
 content: |
 [client]
 user=root
 password={{ mysql_root.secret }}

 # commands executed as root
 #
 runcmd:

 # set keys used by account ubuntu
 #
 - echo "===== Handling ubuntu identity"
 - cp -n /etc/ssh/ssh_host_rsa_key /home/ubuntu/.ssh/id_rsa
 - cp -n /etc/ssh/ssh_host_rsa_key.pub /home/ubuntu/.ssh/id_rsa.pub
 - chown ubuntu:ubuntu /home/ubuntu/.ssh/*

 # host keys are changing on each cloud-init execution
 #
 - sed -i "/StrictHostKeyChecking/s/^.*$/ StrictHostKeyChecking no/" /etc/ssh/ssh_config

 # update the /etc/hosts with awk
 #
 - echo "===== Updating /etc/hosts"
 - cp -n /etc/hosts /etc/hosts.original
 - awk -f /root/hosts.awk /etc/hosts >/etc/hosts.new && mv /etc/hosts.new /etc/hosts

 # update the SQL configuration
 #
 - echo "===== Configuring SQL engine"
 - cp -n /etc/mysql/my.cnf /etc/mysql/my.cnf.original
 - sed -i -f /root/my.cnf.sed /etc/mysql/my.cnf
 - /etc/init.d/mysql restart
 - mysql -e "source /root/master_setup.sql" -u root -p{{ mysql_root.secret }}
 - chown ubuntu:ubuntu /home/ubuntu/.my.cnf

 # execute a SQL script to populate the database
 #
 - echo "===== Populating SQL database"
 - mysql -e "source /root/master_db.sql" -u root -p{{ mysql_root.secret }}

 # dump the database and prepare rsync transfer for account ubuntu
 #
 - echo "===== Sharing SQL dump"
 - mkdir /var/rsync
 - mysqldump --lock-all-tables --all-databases -u root -p{{ mysql_root.secret }} > /var/rsync/all-databases.sql
 - sed -i "1i RESET MASTER;" /var/rsync/all-databases.sql
 - chown -R ubuntu:ubuntu /var/rsync

 locationId: AU11
 regionId: dd-au

 blueprints:

 - sql:

 # reservation of 2 public ipv4 addresses to be given to nodes afterwards
 #
 domain:
 name: VDC2
 description: "Demonstration of SQL replication"
 ipv4: 2

 # firewall is configured to accept ipv6 traffic from the master
 #
 ethernet:
 name: databases
 subnet: 10.0.0.0
 accept:
 - AU10::databases

 nodes:
 - slaveSQL:

 # plumbery turns hashtags to groups in the inventory
 #
 description: "#slave #database #sql server #ubuntu"

 # instructions to be displayed to end user
 #
 information:
 - "this is a SQL Slave server"
 - "check replication with:"
 - "$ ssh ubuntu@{{ slaveSQL.public }}"
 - "$ mysql"
 - "> show slave status\\G"
 - "check data with:"
 - "> use db01;"
 - "> select * from persons;"

 # you could use 'CentOS' or other label from CloudControl library
 #
 appliance: 'Ubuntu 14'

 # computing power
 #
 cpu: 8
 memory: 32

 # add NAT to the internet and open firewall for ssh
 #
 glue:
 - internet 22

 # add the node to the monitoring dashboard
 #
 monitoring: essentials

 # plumbery provides following these directives to cloud-init
 #
 cloud-config:

 # change the hostname to our definition
 #
 hostname: "{{ node.name }}"

 # provide a random password to mysql server
 #
 bootcmd:
 - echo "mysql-server mysql-server/root_password password {{ mysql_root.secret }}" | sudo debconf-set-selections
 - echo "mysql-server mysql-server/root_password_again password {{ mysql_root.secret }}" | sudo debconf-set-selections

 # install packages -- here, time synchronization and mysql
 #
 packages:
 - ntp
 - mysql-server-5.6

 # write various files
 #
 write_files:

 # a script in awk to update the /etc/hosts file
 #
 - path: /root/hosts.awk
 content: |
 #!/usr/bin/awk -f
 /^{{ slaveSQL.private }}/ {next}
 /^{{ slaveSQL.ipv6 }}/ {next}
 /^{{ AU10::masterSQL.ipv6 }}/ {next}
 {print}
 END {
 print "{{ slaveSQL.private }} slaveSQL"
 print "{{ slaveSQL.ipv6 }} slaveSQL"
 print "{{ AU10::masterSQL.ipv6 }} masterSQL"
 }

 # a script in sed to change the configuration of mysql
 #
 - path: /root/my.cnf.sed
 content: |
 #!/usr/bin/sed
 /bind-address/s/127.0.0.1/::/
 s/#server-id/server-id/
 /server-id/s/= 1/= 456/
 /server-id/a read-only = ON
 s/#log_bin.*/log-bin = mysql-bin/
 /max_binlog_size/a log-slave-updates\nbinlog_format = MIXED\nenforce-gtid-consistency\ngtid-mode = ON\nrelay-log = relay-log-slave
 /enforce-gtid-consistency/s/^#//
 /gtid-mode/s/^#//
 $!N; /^\(.*\)\n\1$/!P; D

 # SQL directives to configure replication on slave
 #
 - path: /root/slave_setup.sql
 content: |
 STOP SLAVE;
 CHANGE MASTER TO
 MASTER_HOST='masterSQL',
 MASTER_USER='replicator',
 MASTER_PASSWORD='{{ replicator.secret }}',
 MASTER_AUTO_POSITION = 1;
 START SLAVE;

 # allow the ubuntu account to handle the database easily
 #
 - path: /home/ubuntu/.my.cnf
 permissions: '0400'
 content: |
 [client]
 user=root
 password={{ mysql_root.secret }}

 # commands executed as root
 #
 runcmd:

 # set keys used by account ubuntu
 #
 - echo "===== Handling ubuntu identity"
 - cp -n /etc/ssh/ssh_host_rsa_key /home/ubuntu/.ssh/id_rsa
 - cp -n /etc/ssh/ssh_host_rsa_key.pub /home/ubuntu/.ssh/id_rsa.pub
 - chown ubuntu:ubuntu /home/ubuntu/.ssh/*

 # host keys are changing on each cloud-init execution
 #
 - sed -i "/StrictHostKeyChecking/s/^.*$/ StrictHostKeyChecking no/" /etc/ssh/ssh_config

 # update the /etc/hosts with awk
 #
 - echo "===== Updating /etc/hosts"
 - cp -n /etc/hosts /etc/hosts.original
 - awk -f /root/hosts.awk /etc/hosts >/etc/hosts.new && mv /etc/hosts.new /etc/hosts

 # update the SQL configuration
 #
 - echo "===== Configuring SQL engine"
 - cp -n /etc/mysql/my.cnf /etc/mysql/my.cnf.original
 - sed -i -f /root/my.cnf.sed /etc/mysql/my.cnf
 - /etc/init.d/mysql restart
 - chown ubuntu:ubuntu /home/ubuntu/.my.cnf

 # be sure that master will be ready to provide database dump
 #
 - echo "===== Being patient with master server"
 - sleep 1m

 # download database dump in rsync secured by ssh tunnel
 #
 - echo "===== Getting and loading SQL dump"
 - rsync -zhave "ssh -i /home/ubuntu/.ssh/id_rsa" ubuntu@masterSQL:/var/rsync/all-databases.sql /tmp/all-databases.sql
 - mysql -e "source /tmp/all-databases.sql" -u root -p{{ mysql_root.secret }}

 # actual beginning of the replication between master and slave
 #
 - echo "===== Starting SQL replication"
 - mysql -e "source /root/slave_setup.sql" -u root -p{{ mysql_root.secret }}

Please note that in this example both servers are exposed to public Internet.
In the real life this would probably not be the case, since database would
be accessed by application servers from within private back-end networks.

Deployment commands

In this case, the blueprint sql is spread over two different
data centres. For this reason, plumbery will connect separately
to each data centre and to the dirty job to make you happy.

$ python -m plumbery fittings.yaml deploy

This command will build fittings as per the provided plan, and start
servers as well. Look at messages displayed by plumbery while it is
working, so you can monitor what’s happening.

Follow-up commands

At the end of the deployment, plumbery will display on screen some instructions
to help you move forward. You can ask plumbery to display this information
at any time with the following command:

$ python -m plumbery fittings.yaml information

Since servers are up and running, you are invited to play a bit with them, and
show evidence of data replication. For example, you could open two additional
terminal windows, one for the master server and the other for the slave server.
Then connect by ssh, using the ubuntu account, and enter mysql directly.

On the master side, you can type these commands in sequence:

use db01;
select * from persons;
show master status \G

Then move to the slave side, and check status of the server:

use db01;
select * from persons;
show slave status \G

At this stage, the slave server should report the same GTID index than the
master.

Move back to the master server, and create a new record in the table:

insert into persons (name) values ('Alfred');
show master status \G

The last command should show a progress in the GTID information. How is this
reflected on slave side? There you can type the following:

select * from persons;
show slave status \G

The SELECT statement should reflect the record created on the other side. And
the SHOW statement should follow the evolution of the GTID on the master side.

Troubleshooting

The fittings plan is using multiple secrets, and most of them have been used
by plumbery to configure the solution dynamically. If you need to retrieve
one of these secrets, for example, the root password for SQL, then use the
following command:

$ python -m plumbery fittings.yaml secrets

Destruction commands

At the end of the demonstration, you may want to reduce costs with the following:

$ python -m plumbery fittings.yaml stop
$ python -m plumbery fittings.yaml destroy

 © Copyright 2015-206, the community of plumbery users.
 Created using Sphinx 1.3.5.

tutorial.apache2.html

 Navigation

 		
 index

 		
 modules |

 		plumbery 1.0.4 documentation »

Apache2 web server

Ok, let’s start with something simple. In this tutorial we will deploy
a basic web server with Apache2 and PHP on Linux.

Requirements for this use case

		Add a Network Domain

		Add an Ethernet network

		Deploy a Ubuntu server

		Monitor this server

		Assign a public IPv4 address

		Add address translation to ensure end-to-end IP connectivity

		Add firewall rule to accept TCP traffic on port 22 (ssh) and 80 (web)

		Install Apache2 and PHP

		Change the home page

Fittings plan

Copy the text below and put it in a text file named fittings.yaml:

		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58

		 locationId: EU6 # Frankfurt in Europe
 regionId: dd-eu

 blueprints:

 - apache2:

 domain:
 name: Apache2Fox
 description: "Demonstration of a standalone apache2 web server"
 service: essentials
 ipv4: 2

 ethernet:
 name: apache2fox.servers
 subnet: 192.168.20.0

 nodes:

 - apache01:

 cpu: 1
 memory: 2

 monitoring: essentials

 glue:
 - internet 22 80

 information:
 - "open a browser at http://{{ node.public }}/ to view it live"

 cloud-config:

 disable_root: false
 ssh_pwauth: true

 packages:
 - ntp
 - apache2
 - libapache2-mod-php5

 write_files:

 - content: |
 <html>
 <head>
 <title>Hello World</title>
 </head>
 <body>
 <h1>Hello World</h1>
 <?php echo '<p>This is a warm welcome from plumbery {{ plumbery.version }}</p>'; ?>
 </body>
 </html>
 path: /var/www/html/index.php

 runcmd:
 - mv /var/www/html/index.html /var/www/html/index.html.deprecated

Some notes on directives used in these fittings plan:

service: advanced - Dimension Data provides several flavours of Network
Domains. Here the decision is to deploy an advanced domain

monitoring: essential - Automatically adds monitoring to this node after
its creation.

ipv4: 2 - This is to reserve some public IPv4 addresses. Here we anticipate
on the public address assigned to the web server.

glue: - This directive adds connectivity to a node, either by assigning
a public IPv4 address to the Internet, or by adding network interfaces to
additional networks. With internet 22 80, Plumbery assigns a public IPv4
address and adds NAT rules to the firewall. One allows SSH access, and the other
one is for web access.

information: - This directive helps to document complex deployments. It can
be used to communicate instructions based on real address assignment, like in
this example.

cloud-config - A list of statements that are passed to cloud-init so
that they can be applied to the node during boot sequence. In this example
we install a couple of packages, and write a new home page for this server.

Deployment commands

$ python -m plumbery fittings.yaml deploy

This command will build fittings as per the provided plan, start the server
and bootstrap it.

You can find the public address assigned to the web server like this:

$ python -m plumbery fittings.yaml ping

Follow-up commands

Open a browser window and paste the public address reported by plumbery.
You should receive a welcome HTML page in return.

Destruction commands

The more servers you have, the more costly it is. Would you like to stop the
invoice?

$ python -m plumbery fittings.yaml stop
$ python -m plumbery fittings.yaml destroy

 © Copyright 2015-206, the community of plumbery users.
 Created using Sphinx 1.3.5.

tutorials.html

 Navigation

 		
 index

 		
 modules |

 		plumbery 1.0.4 documentation »

Tutorials and use cases

This page provides a collection of fittings plans and related documentation.

Two minutes from the bottom to the top

You have no time to lose, and neither do we. If you spend one minute at the
first tutorial, you will grasp basic understanding of the approach.

		My first server on the MCP
		Requirements for this use case

		Fittings plan

		Deployment commands

		Follow-up commands

		Destruction commands

And if you have another minute, then use it to look at this second tutorial.
This is a single fittings plan that encompasses most strategic configuration
aspects of modern micro-service.

		Docker node
		Requirements for this use case

		Fittings plan

		Deployment commands

		Follow-up commands

		Destruction commands

Got it? Maybe you would like to look at more tutorials

Ideally, each tutorial features a fittings plan, and step-by-step
instructions to demonstrate it or to use it.

		Multiple disks combined in logical volumes

		Kubernetes pod

		Centralised logging with Elasticsearch, Logstash, and Kibana

		Swarm of IP pingers coordinated with MQTT and reported in Kibana

		Docker Swarm with multiple containers

		Master and slave MySQL databases in different locations

		Stackstorm DevOps server

		Confluence server from Atlassian

		Node.js server

		Apache2 web server

		Cluster of Apache2 web servers

		LEMP server (Linux, Nginx, PHP, MySQL)

		Blog server with Wordpress

		iTop Community, to manage your IT assets

		Ubuntu graphical desktop

		Standalone Object-Based Storage with Minio

		Personal storage with OwnCloud

		OpenVPN gateway

		NFS over ipv6 back-end network

		Cluster of Redis servers

		How to beachhead on the MCP?

		Cluster of MongoDB nodes

		File server with Samba

		The master plan to conquer the world

How to contribute?

If you have developed an interesting use case with plumbery, please
consider to add it to this list. This is a smart way to help others, and
to get feedback from the community as well. How to contribute to Plumbery?

 © Copyright 2015-206, the community of plumbery users.
 Created using Sphinx 1.3.5.

tutorial.disks.html

 Navigation

 		
 index

 		
 modules |

 		plumbery 1.0.4 documentation »

Multiple disks combined in logical volumes

The Managed Cloud Platform from Dimension Data can accomodate for sophisticated
storage needs. In this tutorial we show how to add 6 virtual disks to a single
node, and how to combine these resources in 3 convenient logical volumes.

Requirements for this use case

		Add a Network Domain

		Add an Ethernet network

		Deploy a Ubuntu server

		Add disk 1 with 100 GB of standard storage

		Add disk 2 with 200 GB of standard storage

		Add disk 3 with 30 GB of high-performance storage

		Add disk 4 with 40 GB of high-performance storage

		Add disk 5 with 1000 GB of economy storage

		Add disk 6 with 1000 GB of economy storage

		Monitor this server in the real-time dashboard

		Assign a public IPv4 address

		Add address translation to ensure end-to-end IP connectivity

		Add firewall rule to accept TCP traffic on port 22 (ssh)

		Partition each disk as of Linux LVM type (8e)

		Use LVM to manage logical storage provided by multiple disks

		Extend the mount / with storage brought by disks 1 and 2

		Create new mount /highperformance with combined capacity provided by disks 3 and 4

		Create new mount /economy with combined capacity provided by disks 5 and 6

		Combine the virtual disks into a single expanded logical volume (LVM)

		Install a new SSH key to secure remote communications

		Configure SSH to reject passwords and to prevent access from root account

Fittings plan

Copy the text below and put it in a text file named fittings.yaml:

		 1
 2
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168

 defaults:

 cloud-config: # default for all nodes created by plumbery

 ssh_keys: # generated randomly, and used on subsequent invocations
 rsa_private: |
 {{ key.rsa_private }}
 rsa_public: "{{ key.rsa_public }}"

 users:
 - default

 - name: ubuntu
 sudo: 'ALL=(ALL) NOPASSWD:ALL'
 ssh-authorized-keys:
 - "{{ key.rsa_public }}"
 - "{{ local.rsa_public }}"

 - name: root
 ssh-authorized-keys:
 - "{{ key.rsa_public }}"
 - "{{ local.rsa_public }}"

 disable_root: false

 ssh_pwauth: false

 locationId: NA12

 blueprints:

 - disks:

 domain:
 name: DisksFox
 ipv4: auto
 ethernet:
 name: DisksNetwork
 subnet: 10.0.0.0
 nodes:

 - disks01:

 information:
 - "6 disks have been added to this node"
 - "2 first disks extend standard storage coming with system disk"
 - "2 next disks are combined in a logical volume for high-performance storage"
 - "2 last disks are combined in a logical volume for economy storage"
 - "connect to this server in a terminal window:"
 - "$ ssh ubuntu@{{ node.public }}"
 - "check disk drives with:"
 - "$ sudo fdisk -l"
 - "$ df -h"
 - "$ mount"

 cpu: 2
 memory: 2

 # manage disks of this node
 #
 disks:
 - 1 100 standard
 - 2 200 standard
 - 3 30 highperformance
 - 4 40 highperformance
 - 5 1000 economy
 - 6 1000 economy

 glue:
 - internet 22
 monitoring: essentials

 cloud-config:

 packages:
 - ntp

 write_files:

 - path: /root/set_pdisk.sh
 content: |
 #!/usr/bin/env bash
 if [! -b ${1}1]; then
 echo "===== Partioning ${1}"
 cat <<EOF | fdisk ${1}
 n
 p
 1

 t
 8e
 w
 EOF
 echo "===== Creating LVM physical disk ${1}1"
 pvcreate ${1}1
 fi

 - path: /root/set_vdisk.sh
 content: |
 #!/usr/bin/env bash
 if [-z "$(blkid ${1})"];
 then
 echo "===== Formatting ${1}"
 mkfs -t ${2} ${1}
 fi
 UUID=$(blkid ${1} | sed -n 's/.*UUID=\"\([^\"]*\)\".*/\1/p')

 if ! grep -q "${UUID}" /etc/fstab; then
 echo "===== Adding ${1} to fstab"
 LINE="UUID=\"${UUID}\"\t${3}\t${2}\tnoatime,nodiratime,nodev,noexec,nosuid\t1 2"
 echo -e "${LINE}" >> /etc/fstab
 fi

 echo "===== Mounting ${3}"
 [-d "${3}"] || mkdir -p "${3}"
 mount "${3}"

 runcmd:
 - chmod +x /root/set_pdisk.sh
 - chmod +x /root/set_vdisk.sh

 - echo "===== Handling additional disk 1"
 - /root/set_pdisk.sh /dev/sdb
 - echo "===== Adding /dev/sdb1 to standard storage"
 - vgextend rootvol00 /dev/sdb1
 - lvextend -l +100%FREE /dev/mapper/rootvol00-rootlvol00
 - resize2fs /dev/mapper/rootvol00-rootlvol00

 - echo "===== Handling additional disk 2"
 - /root/set_pdisk.sh /dev/sdc
 - echo "===== Adding /dev/sdc1 to standard storage"
 - vgextend rootvol00 /dev/sdc1
 - lvextend -l +100%FREE /dev/mapper/rootvol00-rootlvol00
 - resize2fs /dev/mapper/rootvol00-rootlvol00

 - echo "===== Handling additional disk 3"
 - /root/set_pdisk.sh /dev/sdd
 - echo "===== Configuring /dev/sdd1 for high-performance storage"
 - vgcreate highperformancevg /dev/sdd1
 - lvcreate -l 100%FREE -n highperformancelv highperformancevg
 - /root/set_vdisk.sh /dev/highperformancevg/highperformancelv ext4 /highperformance

 - echo "===== Handling additional disk 4"
 - /root/set_pdisk.sh /dev/sde
 - echo "===== Adding /dev/sde1 to high-performance storage"
 - vgextend highperformancevg /dev/sde1
 - lvextend -l +100%FREE /dev/mapper/highperformancevg-highperformancelv
 - resize2fs /dev/mapper/highperformancevg-highperformancelv

 - echo "===== Handling additional disk 5"
 - /root/set_pdisk.sh /dev/sdf
 - echo "===== Configuring /dev/sdf1 for economy storage"
 - vgcreate economyvg /dev/sdf1
 - lvcreate -l 100%FREE -n economylv economyvg
 - /root/set_vdisk.sh /dev/economyvg/economylv ext3 /economy

 - echo "===== Handling additional disk 6"
 - /root/set_pdisk.sh /dev/sdg
 - echo "===== Adding /dev/sdg1 to economy storage"
 - vgextend economyvg /dev/sdg1
 - lvextend -l +100%FREE /dev/mapper/economyvg-economylv
 - resize2fs /dev/mapper/economyvg-economylv

Deployment commands

$ python -m plumbery fittings.yaml deploy

These commands will build fittings as per the provided plan, start the server
and bootstrap it.

You can find the public address assigned to the node like this:

$ python -m plumbery fittings.yaml information

Follow-up commands

In this use case you can use the IPv4 assigned to the node for direct ssh
connection.

$ ssh ubuntu@<ipv4_here>

You will have to accept the new host, and authentication will be based on
the SSH key communicated to the node by Plumbery.

$ sudo fdisk -l
$ df -h
$ mount

These commands are self-explanatory and validate disk deployment and configuration.

Destruction commands

Launch following command to remove all resources involved in the fittings plan:

$ python -m plumbery fittings.yaml dispose

 © Copyright 2015-206, the community of plumbery users.
 Created using Sphinx 1.3.5.

_images/tutorial.docker.png
@ rackspace ebay © spotity

O Catassian @ rean QRelatea yelp¥t @maign
“47amazon ybunty® Microsoft Azure GILT OMewrelc QD

@ % E, A Iﬁ m%%%m , B <= vertsve O

@reds NGIUX

nw

Wwowrmss OO O mongoDB

tutorial.redis.cluster.html

 Navigation

 		
 index

 		
 modules |

 		plumbery 1.0.4 documentation »

Cluster of Redis servers

Redis is a key-value database that is providing superior performance to
web site and to application servers. In this tutorial we will orchestrate
a cluster of multiple servers.

Requirements for this use case

		Add a Network Domain

		Add an Ethernet network

		Deploy multiple servers servers

		Monitor these servers

		Add redis to the servers

		Configure one server as the master

		Configure other servers to replicate the master

Fittings plan

Copy the text below and put it in a text file named fittings.yaml:

		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94

 locationId: NA12
 regionId: dd-na

 blueprints:

 - redis:

 domain:
 name: RedisFox
 service: essentials
 ipv4: 4

 ethernet:
 name: redisfox.servers
 subnet: 192.168.20.0

 nodes:

 - redis01: # master server

 cpu: 2
 memory: 4
 monitoring: essentials
 glue:
 - internet 22

 information:
 - "after the setup, connect via ssh to {{ node.public }} to check the status of the cluster"
 - "then use following commands:"
 - "redis-cli -h 127.0.0.1 -p 6379"
 - "> AUTH {{ master.secret }}"
 - "OK"
 - "> INFO"
 - " ... "
 - "# Replication"
 - "role:master"
 - "connected_slaves:3"

 cloud-config:
 disable_root: false
 ssh_pwauth: true
 apt_sources:
 - source: "ppa:chris-lea/redis-server"
 packages:
 - ntp
 - redis-server
 write_files:
 - path: /root/edit_redis_conf.sed
 content: |
 #!/usr/bin/sed
 s/tcp-keepalive 0/tcp-keepalive 60/
 /^bind 127.0.0.1/s/^/#/
 s/# requirepass foobared/requirepass {{ master.secret }}/
 s/# maxmemory-policy volatile-lru/maxmemory-policy noeviction/
 runcmd:
 - cp -n /etc/redis/redis.conf /etc/redis/redis.conf.original
 - sed -i -f /root/edit_redis_conf.sed /etc/redis/redis.conf
 - sudo service redis-server restart

 - redis0[2..4]: # slave servers

 cpu: 2
 memory: 4
 monitoring: essentials
 glue:
 - internet 22

 information:
 - "this slave server connects automatically to the master server"

 cloud-config:
 disable_root: false
 ssh_pwauth: true
 apt_sources:
 - source: "ppa:chris-lea/redis-server"
 packages:
 - ntp
 - redis-server
 write_files:
 - content: |
 #!/usr/bin/sed
 s/tcp-keepalive 0/tcp-keepalive 60/
 /^bind 127.0.0.1/s/^/#/
 s/# requirepass foobared/requirepass {{ random.secret }}/
 s/# maxmemory-policy volatile-lru/maxmemory-policy noeviction/
 s/# slaveof <masterip> <masterport>/slaveof {{ redis01.private }} 6379/
 s/# masterauth <master-password>/masterauth {{ master.secret }}/

 path: /root/edit_redis_conf.sed
 runcmd:
 - cp -n /etc/redis/redis.conf /etc/redis/redis.conf.original
 - sed -i -f /root/edit_redis_conf.sed /etc/redis/redis.conf
 - sudo service redis-server restart

Deployment commands

$ python -m plumbery fittings.yaml deploy

These commands build fittings as per the provided plan, start servers
and bootstrap them. The last command will display the secret used to
authenticate to the redis master server.

You can check status of servers like this:

$ python -m plumbery fittings.yaml ping

Follow-up commands

After the setup, connect via ssh to redis01 to check the status of the cluster:

$ ssh root@<ipv4_of_redis01>
$ redis-cli -h 127.0.0.1 -p 6379
> AUTH {{ random.secret }}
OK
> INFO
...
Replication
role:master
connected_slaves:3

Destruction commands

The more servers you have, the more costly it is. Would you like to stop the
invoice?

$ python -m plumbery fittings.yaml stop
$ python -m plumbery fittings.yaml destroy

 © Copyright 2015-206, the community of plumbery users.
 Created using Sphinx 1.3.5.

_images/plumbery.png
Dimension Data.

fitings file

(in YAML) plumbery

Microsoft Azure

Apache liocloud, cloud-nit terraform,

plumbery.polishers.windows.html

 Navigation

 		
 index

 		
 modules |

 		plumbery 1.0.4 documentation »

plumbery.polishers.windows module

 © Copyright 2015-206, the community of plumbery users.
 Created using Sphinx 1.3.5.

plumbery.polishers.configure.html

 Navigation

 		
 index

 		
 modules |

 		plumbery 1.0.4 documentation »

plumbery.polishers.configure module

 © Copyright 2015-206, the community of plumbery users.
 Created using Sphinx 1.3.5.

tutorial.samba.html

 Navigation

 		
 index

 		
 modules |

 		plumbery 1.0.4 documentation »

File server with Samba

This tutorial is aiming to install a standalone Samba server to share
files among multiple users.

Requirements for this use case

		Create a Network Domain

		Create an Ethernet network (a VLAN)

		Deploy a virtual server

		Add the server to the automated monitoring dashboard

		Assign a public IPv4 address to the server

		Add address translation to ensure end-to-end IP connectivity

		Add firewall rule to accept TCP traffic on ports 22 (ssh), 139 and 445

		Add samba to the server and configure it

Fittings plan

Copy the text below and put it in a text file named fittings.yaml:

		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69

 locationId: NA12
 regionId: dd-na

 blueprints:

 - samba:

 domain:
 name: SambaFox
 service: essentials
 ipv4: 2

 ethernet:
 name: sambafox.servers
 subnet: 192.168.20.0

 nodes:

 - samba01:

 appliance: 'Ubuntu 14'
 cpu: 2
 memory: 4
 monitoring: essentials
 glue:
 - internet 22 139 445

 information:
 - "connect to smb://{{ node.public }}/ to write and read files"

 cloud-config:
 disable_root: false
 ssh_pwauth: true
 packages:
 - ntp
 - samba
 - samba-common
 - python-glade2
 - system-config-samba
 write_files:
 - path: /etc/samba/smb.conf.plumbery
 content: |
 [global]
 workgroup = WORKGROUP
 server string = Samba Server %v
 netbios name = {{ node.name }}
 load printers = no
 printing = bsd
 printcap name = /dev/null

 [Public]
 comment = Public share access
 path = /samba/public
 browsable = yes
 writable = yes
 guest ok = yes
 read only = no
 force user = nobody
 force group = nogroup

 runcmd:
 - mkdir -p /samba/public
 - chmod -R 0755 /samba/public
 - chown -R nobody:nogroup /samba/public/
 - cp -n /etc/samba/smb.conf /etc/samba/smb.conf.original
 - rm /etc/samba/smb.conf
 - cp /etc/samba/smb.conf.plumbery /etc/samba/smb.conf
 - service smbd restart

Deployment commands

$ python -m plumbery fittings.yaml deploy
$ python -m plumbery fittings.yaml start

This command will build fittings as per the provided plan, start the server
and bootstrap it. Look at messages displayed by plumbery while it is
working, so you can monitor what’s happening.

Connect to the server and share files

Note

This use case does not work yet. The deployment itself is ok, yet the
SMB connection to the server is failing. Thanks for your contribution
on troubleshooting the use case and make it work.

Destruction commands

Cloud computing has a hard rule. Any resource has a cost, be it used or not.
At the end of every session, you are encouraged to destroy everything.
Hopefully, plumbery is making this really simple:

$ python -m plumbery fittings.yaml stop
$ python -m plumbery fittings.yaml destroy

 © Copyright 2015-206, the community of plumbery users.
 Created using Sphinx 1.3.5.

plumbery.polishers.cpu.html

 Navigation

 		
 index

 		
 modules |

 		plumbery 1.0.4 documentation »

plumbery.polishers.cpu module

 © Copyright 2015-206, the community of plumbery users.
 Created using Sphinx 1.3.5.

fittings.cloud-config.html

 Navigation

 		
 index

 		
 modules |

 		plumbery 1.0.4 documentation »

Configure nodes with cloud-config

Cloud-config directives are a mean to configure individual nodes via a process named cloud-init.
Cloud-init is a package that is available for major versions of Linux, including Ubuntu, CentOS, Red Hat.

On this page we will present format and usage of some useful directives that can be integrated in fittings plan handled by plumbery.

cloud-config directives and plumbery

Cloud-config directive is written in YAML, like the rest of fittings plan that
plumbery is using. The cloud-config format implements a declarative syntax for many common
configuration items, making it easy to accomplish many tasks. It also allows you
to specify arbitrary commands for anything that falls outside of the predefined
declarative capabilities.

This “best of both worlds” approach lets the directive acts like a configuration
file for common tasks, while maintaining the flexibility of a script for more
complex functionality:

nodes:

 - myServer:
 cloud-config:
 users:
 - name: demo
 groups: sudo
 shell: /bin/bash
 sudo: ['ALL=(ALL) NOPASSWD:ALL']
 ssh-authorized-keys:
 - ssh-rsa AAAAB3NzaC1yc2EAAAADAQABAAABAQDf0q4PyG0doiBQYV7OlOxbRjle026hJPBWD+eKHWuVXIpAiQlSElEBqQn0pOqNJZ3IBCvSLnrdZTUph4czNC4885AArS9NkyM7lK27Oo8RV888jWc8hsx4CD2uNfkuHL+NI5xPB/QT3Um2Zi7GRkIwIgNPN5uqUtXvjgA+i1CS0Ku4ld8vndXvr504jV9BMQoZrXEST3YlriOb8Wf7hYqphVMpF3b+8df96Pxsj0+iZqayS9wFcL8ITPApHi0yVwS8TjxEtI3FDpCbf7Y/DmTGOv49+AWBkFhS2ZwwGTX65L61PDlTSAzL+rPFmHaQBHnsli8U9N6E4XHDEOjbSMRX user@example.com
 - ssh-rsa AAAAB3NzaC1yc2EAAAADAQABAAABAQDcthLR0qW6y1eWtlmgUE/DveL4XCaqK6PQlWzi445v6vgh7emU4R5DmAsz+plWooJL40dDLCwBt9kEcO/vYzKY9DdHnX8dveMTJNU/OJAaoB1fV6ePvTOdQ6F3SlF2uq77xYTOqBiWjqF+KMDeB+dQ+eGyhuI/z/aROFP6pdkRyEikO9YkVMPyomHKFob+ZKPI4t7TwUi7x1rZB1GsKgRoFkkYu7gvGak3jEWazsZEeRxCgHgAV7TDm05VAWCrnX/+RzsQ/1DecwSzsP06DGFWZYjxzthhGTvH/W5+KFyMvyA+tZV4i1XM+CIv/Ma/xahwqzQkIaKUwsldPPu00jRN user@desktop
 runcmd:
 - touch /test.txt

This example allows us to illustrate a number of important things.

First, each cloud-config directive begins with a standalone cloud-config: key.
This signals plumbery that this should be handled as a cloud-config file, and communicated to the target node.

The directive above has two top-level directives, users and runcmd.
These both serve as keys. The values of these keys consist of all of the indented lines after the keys.

In the case of the users key, the value is a single list item. We know this because
the next level of indentation is a dash (-) which specifies a list item, and because
there is only one dash at this indentation level. In the case of the users directive,
this incidentally indicates that we are only defining a single user named demo.

The list item itself contains an associative array with more key-value pairs.
These are sibling elements because they all exist at the same level of indentation.
Each of the user attributes are contained within the single list item we described above.

Some things to note are that the strings you see do not require quoting and that
there are no unnecessary brackets to define associations. The interpreter can
determine the data type fairly easily and the indentation indicates the relationship of items, both for humans and programs.

Plumbery will push the cloud-config directive to target nodes with the following
command:

python -m plumbery fittings.yaml prepare

By now, you should have a working knowledge of the YAML format and feel comfortable
working with information using the rules we discussed above.
We can now begin exploring some of the most common directives for cloud-config.

Write files to the file system

In order to write files to the disk, you should use the write_files directive.

Each file that should be written is represented by a list item under the directive.
These list items will be associative arrays that define the properties of each file.

The only required keys in this array are path, which defines where to write the file,
and content, which contains the data you would like the file to contain.

The available keys for configuring a write_files item are:

		path: The absolute path to the location on the filesystem where the file should be written.

		content: The content that should be placed in the file.
For multi-line input, you should start a block by using a pipe character (|)
on the “content” line, followed by an indented block containing the content.
Binary files should include ”!!binary” and a space prior to the pipe character.

		permissions: The octal permissions set that should be given for this file.

		encoding: An optional encoding specification for the file.
This can be “b64” for Base64 files, “gzip” for Gzip compressed files,
or “gz+b64” for a combination. Leaving this out will use the default, conventional file type.

For example, we could write a file to /test.txt with the contents:

Hello world.
How are you doing today?

The portion of the cloud-config that would accomplish this would look like this:

cloud-config:
 write_files:
 - path: /test.txt
 content: |
 Hello world.
 How are you doing today?

Update or install packages on the server

To install additional packages, you can simply list the package names using the
packages: directive. Each list item should represent a package:

cloud-config:
 packages:
 - nodejs
 - npm
 - nodejs-legacy
 - mongodb
 - mongodb-server
 - git

One advantage of using cloud-config to install packages is that this directive
will function with either yum or apt managed distributions.

Run shell commands as root

If none of the managed actions that cloud-config provides works for what you
want to do, you can also run arbitrary commands with the runcmd: directive.
This directive takes a list of items to execute, that will be passed to the shell process:

cloud-config:
 runcmd:
 - echo "===== Installing Docker"
 - curl -sSL https://get.docker.com/ | sh

Any output will be written to the /var/log/cloud-init-output.log file. This
is the file to check after any contextualisation attempt, for any error eventually.

Preserve passwords and root access

The original cloud-init package disables ssh access for the root account. It also
changes the server configuration to prevent authentication with passwords, and
allow ssh keys only.

You can ask plumbery to generate keys and transmit these to nodes to fully
secure nodes and to support passwordless access to nodes.

However, for simple demonstrations, or similar short-lived deployments, you
may just add following directives to access nodes with ssh, as root, with the
master secret password used by plumbery for the creation of servers:

cloud-config:
 disable_root: false
 ssh_pwauth: true

Deploying at two data centres

Plumbery supports multiple documents in a single fittings file, each document (seperated by 3 dashes in YAML) can have it’s own regionId and locationId.

information:
 - "Multi-Geography deployment example"
links:
 documentation: https://developer.dimensiondata.com/PLUM

regionId: dd-eu
locationId: EU6
blueprints:
 ...

regionId: dd-na
locationId: NA9
blueprints:
 ...

How to learn more about cloud-config?

Since cloud-config has become an industry-standard, that is used commonly at Amazon Web Services,
at OpenStack-based clouds, and others, you will find many interesting web
pages and tutorials on the Internet, for example:

http://cloudinit.readthedocs.org/en/latest/topics/examples.html

Here you will learn how to use chef or puppet with cloud-config, install ssh keys,
and many more interesting things.

 © Copyright 2015-206, the community of plumbery users.
 Created using Sphinx 1.3.5.

tutorial.mqtt.pinger.swarm.html

 Navigation

 		
 index

 		
 modules |

 		plumbery 1.0.4 documentation »

Swarm of IP pingers coordinated with MQTT and reported in Kibana

The objective of this use case is to deploy a swarm of network pingers at
multiple data centres. MQTT is used across the swarm to coordinate the pingers
and to consolidate data. The back-end IPv6 infrastructure provided by
Dimension Data is used to streamline MQTT traffic across agents and broker,
in a secured backbone. Ping results are recorded in a centralised
Elasticsearch server, and shown in a Kibana interactive dashboard.

[image: _images/tutorial.mqtt.pinger.swarm.kibana.png]
The network
and security services coming with cloud services from Dimension Data are used
to control access and to secure remote access to various building blocks of the
architecture.

Project credits: Swarming project from Mathieu Lecarme [https://github.com/athoune/swarming]

Requirements for this use case

The diagram below provides some essential understanding of the architecture
to be deployed:

[image: _images/tutorial.mqtt.pinger.swarm.architecture.png]
There are a number of actions involved in the overall deployment, and plumbery
will assist to orchestrate all of them, except the custom configuration of the Kibana dashboard:

		Deploy a MQTT broker in the focus data centre – the queen

		Deploy an Elasticsearch & Kibana server in the same data centre – the dashboard

		Deploy pinger nodes in multiple data centres world-wide – the bees

		Create a Network Domain at each location

		Create an Ethernet network at each location

		Allow IPv6 traffic between MQTT clients (the bees) and the broker (the queen)

		Add nodes to the automated monitoring dashboard

		Assign public IPv4 addresses to each node

		Add address translation to ensure SSH access to the nodes from the internet

		Add firewall rules to accept TCP traffic on port 22 (ssh)

		Add firewall rule to allow web traffic to the dashboard server

		Update etc/hosts to bind IPv6 addresses to host names

		Manage keys to suppress passwords in SSH connections

		Install MQTT server at the queen node

		Install MQTT client software at bees and at the dashboard

		Install pingers in python at bee nodes

		Install indexer programs in python at the dashboard node

		Install Elasticsearch and Kibana at the dashboard node

		Feed the list of addresses to ping at the queen node

		Configure Kibana to deliver the visual reporting dashboard

Fittings plan

The plan below demonstrates multiple interesting tips and tricks:

		Provide SSH access to all nodes via public IPv4, NAT, and firewall settings

		Management of SSH keys to enable secured communications without passwords

		Allow private IPv6 communications between remote data centres and the focus data centre

		Automatic registration of all nodes to the monitoring services provided by Dimension Data

		Update of etc/hosts with IPv6

		Install swarming software in python directly from GitHub repository

		Turn a python command to a service that can be started and stopped on-demand

		Remove Apache, and install Nginx instead

		Install an interactive dashboard with Elasticseach and Kibana

		Configure Nginx as efficient and secured proxy to Kibana

		Orchestrate generation and configuration of web password to the dashboard

		Automate the installation of Oracle 8 JDK

		User documentation of the infrastructure is put directly in the fittings plan

Download this fittings plan [https://github.com/bernard357/plumbery/blob/master/demos/mqtt.pinger.swarm.yaml] if you want to hack it for yourself. This is part of the demonstration
directory of the plumbery project [https://github.com/bernard357/plumbery/tree/master/demos] at GitHub. Alternatively, you can copy the
text below and put it in a text file named fittings.yaml.

		 1
 2
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492

 information:
 - "These fittings plan are aiming to deploy multiple pingers connected"
 - "to a MQTT server and to a Kibana dashboard"

 links:
 documentation: https://plumbery.readthedocs.org/en/latest/tutorial.mqtt.pinger.swarm.html
 credit: https://github.com/athoune/swarming

 defaults:

 # deploy a limited number of bugs by default
 #
 blueprints: queen drones

 # the same network domain is used at various facilities
 #
 domain:
 name: PingerSwarmFox
 description: "Demonstration of MQTT with multiple pingers"
 ipv4: auto

 # the same ethernet configuration is used at various facilities
 #
 ethernet:
 name: SwarmNetwork
 subnet: 10.0.0.0

 # default settings for a remote probe
 #
 bee:

 description: "#swarm #bee #mqtt #ubuntu"

 information:
 - "a pinger controlled via MQTT"
 - "troubleshoot with:"
 - "$ ssh ubuntu@{{ node.public }}"

 appliance: 'Ubuntu 14'

 cpu: 2
 memory: 3

 glue:
 - internet 22

 monitoring: essentials

 cloud-config:

 hostname: "{{ node.name }}"

 packages:
 - ntp
 - mosquitto-clients
 - git
 - python-pip

 write_files:

 - path: /root/hosts.awk
 content: |
 #!/usr/bin/awk -f
 /^{{ node.private }}/ {next}
 /^{{ node.ipv6 }}/ {next}
 /^{{ dd-au::AU10::queen.ipv6 }}/ {next}
 {print}
 END {
 print "{{ node.private }} {{ node.name }}"
 print "{{ node.ipv6 }} {{ node.name }}"
 print "{{ dd-au::AU10::queen.ipv6 }} queen"
 }

 - path: /etc/init/swarm-pinger.conf
 content: |
 description "Swarm pinger"
 start on runlevel [2345]
 stop on runlevel [!2345]
 start on startup
 exec /home/ubuntu/swarming/swarming.py queen

 runcmd:

 - echo "===== Handling ubuntu identity"
 - cp -n /etc/ssh/ssh_host_rsa_key /home/ubuntu/.ssh/id_rsa
 - cp -n /etc/ssh/ssh_host_rsa_key.pub /home/ubuntu/.ssh/id_rsa.pub
 - chown ubuntu:ubuntu /home/ubuntu/.ssh/*
 - sed -i "/StrictHostKeyChecking/s/^.*$/ StrictHostKeyChecking no/" /etc/ssh/ssh_config

 - echo "===== Updating /etc/hosts"
 - cp -n /etc/hosts /etc/hosts.original
 - awk -f /root/hosts.awk /etc/hosts >/etc/hosts.new && mv /etc/hosts.new /etc/hosts

 - echo "===== Installing swarming software"
 - cd /home/ubuntu
 - git clone https://github.com/bernard357/swarming.git
 - cd swarming
 - pip install -r requirements.txt

 - echo "===== Running swarming software"
 - service swarm-pinger start

 # default settings for all nodes created by plumbery
 #
 cloud-config:

 # plumbery generates a random key pair
 #
 ssh_keys:
 rsa_private: |
 {{ key.rsa_private }}
 rsa_public: "{{ key.rsa_public }}"

 users:
 - default

 - name: ubuntu
 sudo: 'ALL=(ALL) NOPASSWD:ALL'
 ssh-authorized-keys:
 - "{{ key.rsa_public }}"
 - "{{ local.rsa_public }}"

 - name: root
 ssh-authorized-keys:
 - "{{ key.rsa_public }}"
 - "{{ local.rsa_public }}"

 disable_root: false
 ssh_pwauth: false

 locationId: AU10
 regionId: dd-au

 blueprints:

 - queen:

 ethernet:
 accept:
 - dd-ap::AP3::SwarmNetwork
 - dd-ap::AP4::SwarmNetwork
 - dd-ap::AP5::SwarmNetwork
 - dd-au::AU11::SwarmNetwork
 - dd-eu::EU6::SwarmNetwork
 - dd-eu::EU8::SwarmNetwork
 - dd-na::NA9::SwarmNetwork
 - dd-na::NA12::SwarmNetwork

 nodes:

 - queen: # the MQTT server

 description: "#swarm #queen #mqtt #ubuntu"

 information:
 - "a MQTT broker to control a swarm of pingers"
 - "$ ssh ubuntu@{{ node.public }}"
 - "change target addresses with something like the following:"
 - '$ mosquitto_pub -t watch -m "free.fr yahoo.fr yahoo.cn" -q 1'
 - "check the flow of pings with:"
 - '$ mosquitto_sub -t "ping/+" -v'

 appliance: 'Ubuntu 14'

 cpu: 2
 memory: 3

 glue:
 - internet 22

 monitoring: essentials

 cloud-config:

 hostname: "{{ node.name }}"

 apt_sources:
 - source: "ppa:mosquitto-dev/mosquitto-ppa"

 packages:
 - ntp
 - mosquitto
 - mosquitto-clients
 - git
 - python-pip

 write_files:

 - path: /root/hosts.awk
 content: |
 #!/usr/bin/awk -f
 /^{{ node.private }}/ {next}
 /^{{ queen.ipv6 }}/ {next}
 /^{{ dashboard.ipv6 }}/ {next}
 /^{{ dd-na::NA9::bee-NA9.ipv6 }}/ {next}
 {print}
 END {
 print "{{ node.private }} {{ node.name }}"
 print "{{ queen.ipv6 }} queen"
 print "{{ dashboard.ipv6 }} dashboard"
 print "{{ dd-na::NA9::bee-NA9.ipv6 }} bee-NA9"
 }

 runcmd:

 - echo "===== Handling ubuntu identity"
 - cp -n /etc/ssh/ssh_host_rsa_key /home/ubuntu/.ssh/id_rsa
 - cp -n /etc/ssh/ssh_host_rsa_key.pub /home/ubuntu/.ssh/id_rsa.pub
 - chown ubuntu:ubuntu /home/ubuntu/.ssh/*
 - sed -i "/StrictHostKeyChecking/s/^.*$/ StrictHostKeyChecking no/" /etc/ssh/ssh_config

 - echo "===== Updating /etc/hosts"
 - cp -n /etc/hosts /etc/hosts.original
 - awk -f /root/hosts.awk /etc/hosts >/etc/hosts.new && mv /etc/hosts.new /etc/hosts

 - echo "===== Installing swarming software"
 - cd /home/ubuntu
 - git clone https://github.com/bernard357/swarming.git
 - cd swarming
 - pip install -r requirements.txt

 - dashboard: # the Kibana and Elasticsearch engine

 description: "#swarm #dashboard #kibana #ubuntu"

 information:
 - "a web dashboard to visualize pings:"
 - "http://{{ dashboard.public }}"
 - "authenticate with 'dashboard' and '{{ dashboard.secret }}'"
 - "troubleshoot with:"
 - "$ ssh ubuntu@{{ node.public }}"
 - "check the feeding of elasticsearch with:"
 - "$ curl 'http://localhost:9200/_cat/indices?v'"

 appliance: 'Ubuntu 14'

 cpu: 2
 memory: 3

 glue:
 - internet 22 80

 monitoring: essentials

 cloud-config:

 hostname: "{{ node.name }}"

 bootcmd:

 # remove apache
 - apt-get remove apache2 -y
 - apt-get autoremove -y

 # automate acceptance of oracle licence
 - echo "oracle-java8-installer shared/accepted-oracle-license-v1-1 select true" | sudo debconf-set-selections
 - echo "oracle-java8-installer shared/accepted-oracle-license-v1-1 seen true" | sudo debconf-set-selections

 apt_sources:
 - source: "ppa:mosquitto-dev/mosquitto-ppa"
 - source: "ppa:webupd8team/java"

 packages:
 - ntp
 - mosquitto-clients
 - git
 - oracle-java8-installer
 - python-pip
 - nginx
 - apache2-utils

 write_files:

 - path: /root/hosts.awk
 content: |
 #!/usr/bin/awk -f
 /^{{ node.private }}/ {next}
 /^{{ queen.ipv6 }}/ {next}
 /^{{ dashboard.ipv6 }}/ {next}
 /^{{ dd-na::NA9::bee-NA9.ipv6 }}/ {next}
 {print}
 END {
 print "{{ node.private }} {{ node.name }}"
 print "{{ queen.ipv6 }} queen"
 print "{{ dashboard.ipv6 }} dashboard"
 print "{{ dd-na::NA9::bee-NA9.ipv6 }} bee-NA9"
 }

 - path: /etc/nginx/sites-available/default.swarm
 content: |
 server {
 listen 80;

 server_name {{ node.public }};

 auth_basic "Restricted Access";
 auth_basic_user_file /etc/nginx/htpasswd.users;

 location / {
 proxy_pass http://localhost:5601;
 proxy_http_version 1.1;
 proxy_set_header Upgrade $http_upgrade;
 proxy_set_header Connection 'upgrade';
 proxy_set_header Host $host;
 proxy_cache_bypass $http_upgrade;
 }
 }

 - path: /etc/init/swarm-indexer.conf
 content: |
 description "Swarm indexer"
 start on runlevel [2345]
 stop on runlevel [!2345]
 start on startup
 exec /home/ubuntu/swarming/indexer.py queen

 runcmd:

 - echo "===== Handling ubuntu identity"
 - cp -n /etc/ssh/ssh_host_rsa_key /home/ubuntu/.ssh/id_rsa
 - cp -n /etc/ssh/ssh_host_rsa_key.pub /home/ubuntu/.ssh/id_rsa.pub
 - chown ubuntu:ubuntu /home/ubuntu/.ssh/*
 - sed -i "/StrictHostKeyChecking/s/^.*$/ StrictHostKeyChecking no/" /etc/ssh/ssh_config

 - echo "===== Updating /etc/hosts"
 - cp -n /etc/hosts /etc/hosts.original
 - awk -f /root/hosts.awk /etc/hosts >/etc/hosts.new && mv /etc/hosts.new /etc/hosts

 - echo "===== Installing Elasticsearch, Kibana"
 - cd /root
 - wget -qO - https://packages.elastic.co/GPG-KEY-elasticsearch | sudo apt-key add -
 - echo "deb http://packages.elastic.co/elasticsearch/2.x/debian stable main" | sudo tee -a /etc/apt/sources.list.d/elasticsearch-2.x.list
 - echo "deb http://packages.elastic.co/kibana/4.4/debian stable main" | sudo tee -a /etc/apt/sources.list.d/kibana-4.4.x.list
 - apt-get update
 - apt-get install elasticsearch kibana
 - update-rc.d elasticsearch defaults 95 10
 - service elasticsearch start
 - update-rc.d kibana defaults 96 9
 - service kibana start

 - echo "===== Securing web access"
 - cp -n /etc/nginx/sites-available/default /etc/nginx/sites-available/default.original
 - cp /etc/nginx/sites-available/default.swarm /etc/nginx/sites-available/default
 - htpasswd -cb /etc/nginx/htpasswd.users dashboard {{ dashboard.secret }}
 - service nginx restart

 - echo "===== Installing swarming software"
 - cd /home/ubuntu
 - git clone https://github.com/bernard357/swarming.git
 - cd swarming
 - pip install -r requirements.txt

 - echo "===== Running swarming software"
 - service swarm-indexer restart

 - drones:

 nodes:
 - bee-AU10:
 default: bee

 locationId: AP3
 regionId: dd-ap

 blueprints:

 - drones:

 ethernet:
 accept:
 - dd-au::AU10::SwarmNetwork

 nodes:
 - bee-AP3:
 default: bee

 locationId: AP4
 regionId: dd-ap

 blueprints:

 - bees:

 ethernet:
 accept:
 - dd-au::AU10::SwarmNetwork

 nodes:
 - bee-AP4:
 default: bee

 locationId: AP5
 regionId: dd-ap

 blueprints:

 - bees:

 ethernet:
 accept:
 - dd-au::AU10::SwarmNetwork

 nodes:
 - bee-AP5:
 default: bee

 locationId: AU11
 regionId: dd-au

 blueprints:

 - drones:

 ethernet:
 accept:
 - dd-au::AU10::SwarmNetwork

 nodes:
 - bee-AU11:
 default: bee

 locationId: EU6
 regionId: dd-eu

 blueprints:

 - drones:

 ethernet:
 accept:
 - dd-au::AU10::SwarmNetwork

 nodes:
 - bee-EU6:
 default: bee

 locationId: EU8
 regionId: dd-eu

 blueprints:

 - bees:

 ethernet:
 accept:
 - dd-au::AU10::SwarmNetwork

 nodes:
 - bee-EU8:
 default: bee

 locationId: NA9
 regionId: dd-na

 blueprints:

 - bees:

 ethernet:
 accept:
 - dd-au::AU10::SwarmNetwork

 nodes:
 - bee-NA9:
 default: bee

 locationId: NA12
 regionId: dd-na

 blueprints:

 - drones:

 ethernet:
 accept:
 - dd-au::AU10::SwarmNetwork

 nodes:
 - bee-NA12:
 default: bee

Deployment commands

For this tutorial, plumbery has to connect separately to multiple data centres
and to apply several changes in multiple waves.

$ python -m plumbery fittings.yaml deploy

This command will build fittings as per the provided plan, and start
servers as well. Look at messages displayed by plumbery while it is
working, so you can monitor what’s happening.

Follow-up commands

At the end of the deployment, plumbery will display on screen some instructions
to help you move forward. You can ask plumbery to display this information
at any time with the following command:

$ python -m plumbery fittings.yaml information

What’s coming next? You may want to connect to the queen node in ssh and
check the stream of records coming from pingers to the broker via MQTT.

$ ssh ubuntu@<IPv4 of queen node>

Subscribe to the MQTT stream from the command line like this:

$ mosquitto_sub -t "ping/+" -v

After some seconds you will see records popping up from various parts of the world.

Now, let’s move to the dashboard server to check the feeding of the elasticsearch
server.

$ ssh ubuntu@<IPv4 of dashboard node>

From there you can validate the number of records in the index named ‘swarm’
with the following command:

$ curl 'http://localhost:9200/_cat/indices?v'

Repeat the command multiple times and check the increment of documents indexed
by Elasticsearch.

If everything is looking fine at this stage, then you are allowed to move
to the configuration of the Kibana interactive dashboard. In a browser window,
type the public IPv4 address of the dashboard server. When asked for it, provide
the name and the password that were mentioned by plumbery during the deployment
of the fittings plan.

From there you can select the ‘swarm’ index and configure the dashboard as per your
very specific needs.

Change the list of addresses to ping

Ask all pingers to change the list of targets by acting at the MQTT broker.
For this, go to the queen node and type a command like the following:

$ mosquitto_pub -t watch -m "free.fr yahoo.fr yahoo.cn" -q 1

Destruction commands

At the end of the demonstration, you may want to reduce costs with the following:

$ python -m plumbery fittings.yaml dispose

 © Copyright 2015-206, the community of plumbery users.
 Created using Sphinx 1.3.5.

tutorial.owncloud.html

 Navigation

 		
 index

 		
 modules |

 		plumbery 1.0.4 documentation »

Personal storage with OwnCloud

OwnCloud is a web application that can store and serve content from a
centralized location, much like Dropbox. The difference is that ownCloud
allows you to host the serving software on your own machines, taking the
trust issues out of putting your personal data someone else’s server.

Requirements for this use case

		Add a Network Domain

		Add an Ethernet network

		Deploy a Ubuntu server

		Monitor this server

		Assign a public IPv4 address

		Add address translation to ensure end-to-end IP connectivity

		Add firewall rule to accept TCP traffic on port 22 (ssh) and 80 (web)

		Install owncloud

Fittings plan

Copy the text below and put it in a text file named fittings.yaml:

		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45

 locationId: NA12
 regionId: dd-na

 blueprints:

 - owncloud:

 domain:
 name: OwncloudFox
 service: essentials
 ipv4: 2

 ethernet:
 name: owncloudfox.servers
 subnet: 192.168.20.0

 nodes:

 - owncloud01:

 appliance: 'Ubuntu 14'
 cpu: 2
 memory: 4
 monitoring: essentials
 glue:
 - internet 22 80

 information:
 - "open a browser at http://{{ node.public }}/owncloud to view it live"

 cloud-config:
 disable_root: false
 ssh_pwauth: true
 bootcmd:
 - echo "mysql-server mysql-server/root_password password {{ mysql_root.secret }}" | sudo debconf-set-selections
 - echo "mysql-server mysql-server/root_password_again password {{ mysql_root.secret }}" | sudo debconf-set-selections
 packages:
 - ntp
 runcmd:
 - wget -nv https://download.owncloud.org/download/repositories/stable/Ubuntu_14.04/Release.key -O Release.key
 - apt-key add - < Release.key
 - echo "deb http://download.owncloud.org/download/repositories/stable/Ubuntu_14.04/ /" >> /etc/apt/sources.list.d/owncloud.list
 - apt-get update
 - apt-get install -y owncloud

SQL password - You can note how plumbery is asked to generate a random
password, and how this is transmitted to the server before the installation
of the sql package. For this we use the special bootcmd directive, that is
executed before the download of packages.

Deployment commands

$ python -m plumbery fittings.yaml deploy

These commands will build fittings as per the provided plan, start the server
and bootstrap it.

You can find the public address assigned to the web server like this:

$ python -m plumbery fittings.yaml ping

Follow-up commands

Open a browser window and paste the public address reported by plumbery.
You should receive a welcome HTML page in return. The exciting stuff is to
synchronize your workstation with a mobile phone via the same owncloud instance.

Destruction commands

The more servers you have, the more costly it is. Would you like to stop the
invoice?

$ python -m plumbery fittings.yaml stop
$ python -m plumbery fittings.yaml destroy

 © Copyright 2015-206, the community of plumbery users.
 Created using Sphinx 1.3.5.

plumbery.polishers.ping.html

 Navigation

 		
 index

 		
 modules |

 		plumbery 1.0.4 documentation »

plumbery.polishers.ping module

 © Copyright 2015-206, the community of plumbery users.
 Created using Sphinx 1.3.5.

tutorial.docker.html

 Navigation

 		
 index

 		
 modules |

 		plumbery 1.0.4 documentation »

Docker node

Despite the surging interest in containers, the community is still struggling
on the proper setup of a Docker node. In other terms, the handling of containers
is really a breeze compared to previous situation. However, there is a need
to facilitate the deployment of the underlying infrastructure, including the
network and the security.

[image: _images/tutorial.docker.png]
In this tutorial we demonstrate how to create a class of Docker nodes and deploy
one single node. Of course, you can use this file for yourself, and change it
to better accomodate your requirements. For example, duplicate the last section
of this fittings plan and mention other data centres and regions.

Requirements for this use case

		Add a Network Domain

		Add an Ethernet network

		Deploy a large Ubuntu server

		Provide 32 CPU and 256 MB of RAM to each node

		Add a virtual disk of 100 GB

		Monitor this server in the real-time dashboard

		Assign a public IPv4 address to each node

		Add address translation to ensure end-to-end IP connectivity

		Add firewall rule to accept TCP traffic on port 22 (ssh)

		Combine the virtual disks into a single expanded logical volume (LVM)

		Install a new SSH key to secure remote communications

		Configure SSH to reject passwords and to prevent access from root account

		Install Docker

		Allow non-root account to use Docker

Fittings plan

Copy the text below and put it in a text file named fittings.yaml:

		 1
 2
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142

 information:
 - "Orchestration of fully-functional Docker node that you can access remotely and securely over the Internet."
 - "Duplicate the 7 lines at the end of the fittings plan to add nodes at multiple locations."

 defaults:

 # the same network domain is used at various facilities
 #
 domain:
 name: DockerFox
 description: "Docker nodes"
 service: essentials
 ipv4: auto

 # the same ethernet configuration is used at various facilities
 #
 ethernet:
 name: DockerNetwork
 subnet: 192.168.20.0

 # default settings for a Docker node
 #
 dockerNode:

 description: "#docker #ubuntu"

 information:
 - "ssh ubuntu@{{ node.public }}"
 - "docker info"
 - "docker run hello-world"

 appliance: 'Ubuntu 14'

 # plenty of compute power
 #
 cpu: 32
 memory: 256

 # enough storage space
 #
 disks:
 - 1 100 standard

 # make the node accessible from the Internet
 #
 glue:
 - internet 22

 # allow for monitoring from the global dashboard
 #
 monitoring: essentials

 # contextualise this node
 #
 cloud-config:

 hostname: "{{ node.name }}"

 packages:
 - ntp

 write_files:

 - path: /root/hosts.awk
 content: |
 #!/usr/bin/awk -f
 /^{{ node.private }}/ {next}
 /^{{ node.ipv6 }}/ {next}
 {print}
 END {
 print "{{ node.private }} {{ node.name }}"
 print "{{ node.ipv6 }} {{ node.name }}"
 }

 runcmd:

 - echo "===== Growing LVM with added disk"
 - pvcreate /dev/sdb
 - vgextend rootvol00 /dev/sdb
 - lvextend -l +100%FREE /dev/mapper/rootvol00-rootlvol00
 - resize2fs /dev/mapper/rootvol00-rootlvol00

 - echo "===== Handling ubuntu identity"
 - cp -n /etc/ssh/ssh_host_rsa_key /home/ubuntu/.ssh/id_rsa
 - cp -n /etc/ssh/ssh_host_rsa_key.pub /home/ubuntu/.ssh/id_rsa.pub
 - chown ubuntu:ubuntu /home/ubuntu/.ssh/*
 - sed -i "/StrictHostKeyChecking/s/^.*$/ StrictHostKeyChecking no/" /etc/ssh/ssh_config

 - echo "===== Updating /etc/hosts"
 - cp -n /etc/hosts /etc/hosts.original
 - awk -f /root/hosts.awk /etc/hosts >/etc/hosts.new && mv /etc/hosts.new /etc/hosts

 - echo "===== Installing Docker Engine"
 - apt-get remove apache2 -y
 - apt-get autoremove -y
 - curl -sSL https://get.docker.com/ | sh
 - usermod -aG docker ubuntu

 # default settings for all nodes created by plumbery
 #
 cloud-config:

 # ask plumbery to generate a random key pair
 #
 ssh_keys:
 rsa_private: |
 {{ key.rsa_private }}
 rsa_public: "{{ key.rsa_public }}"

 # the ubuntu account will use this key as well
 #
 users:
 - default

 - name: ubuntu
 sudo: 'ALL=(ALL) NOPASSWD:ALL'
 ssh-authorized-keys:
 - "{{ key.rsa_public }}"
 - "{{ local.rsa_public }}"

 # prevent remote access from root
 #
 disable_root: true

 # force authentication with SSH key -- no password allowed
 #
 ssh_pwauth: false

 # duplicate the below to deploy another node at another location, e.g. AU10 in dd-au, etc
 #

 locationId: NA12
 regionId: dd-na

 blueprints:

 - docker:
 nodes:
 - docker-NA12:
 default: dockerNode

Deployment commands

$ python -m plumbery fittings.yaml deploy

These commands will build fittings as per the provided plan, start the server
and bootstrap it.

You can find the public address assigned to the Docker node like this:

$ python -m plumbery fittings.yaml information

Follow-up commands

In this use case you can use the IPv4 assigned to the node for direct ssh
connection.

$ ssh ubuntu@<ipv4_here>

You will have to accept the new host, and authentication will be based on
the SSH key communicated to the node by Plumbery.

$ docker run hello-world

This command is self-explanatory and validates the setup of Docker.

Destruction commands

Launch following command to remove all resources involved in the fittings plan:

$ python -m plumbery fittings.yaml dispose

 © Copyright 2015-206, the community of plumbery users.
 Created using Sphinx 1.3.5.

plumbery.polishers.disks.html

 Navigation

 		
 index

 		
 modules |

 		plumbery 1.0.4 documentation »

plumbery.polishers.disks module

 © Copyright 2015-206, the community of plumbery users.
 Created using Sphinx 1.3.5.

plumbery.actions.dummy.html

 Navigation

 		
 index

 		
 modules |

 		plumbery 1.0.4 documentation »

plumbery.actions.dummy module

 © Copyright 2015-206, the community of plumbery users.
 Created using Sphinx 1.3.5.

plumbery.polishers.base.html

 Navigation

 		
 index

 		
 modules |

 		plumbery 1.0.4 documentation »

plumbery.polishers.base module

		
class plumbery.polishers.base.NodeConfiguration(engine=None, facility=None)[source]

		Bases: object

		
configure(node, settings)[source]

		

		
deconfigure(node, settings)[source]

		

		
validate(settings)[source]

		

 © Copyright 2015-206, the community of plumbery users.
 Created using Sphinx 1.3.5.

fittings.appliance.html

 Navigation

 		
 index

 		
 modules |

 		plumbery 1.0.4 documentation »

Selecting an image to deploy

Each Cloud Server is linked to an image, like in the following exemple:

nodes:

 - myServer:

 appliance: 'Ubuntu 14'
 cpu: 2
 memory: 4

Selecting an image from the standard library

Plumbery checks the standard library and looks for a matching image.
The lookup is based on strings, so they are multiple ways to use this.

		Example
		Description

		appliance: 'RedHat'
		Pickup the first image with label ‘RedHat’ from the library

		appliance: 'RedHat 6 64-bit 2 CPU'
		Select the image with this exact name

		appliance: 'Ubuntu'
		Select the most recent version of Ubuntu

		appliance: 'CentOS 5'
		Select this exact version of CentOS

		appliance: 'Win2012 R2 DC'
		Go for a version of Windows that is adapted to data centres

		appliance: 'Win2012 R2 Std'
		Pickup a standard version on Windows operating system

		appliance: 'Check Point Security Gateway (BYOL)'
		Select an image from the Priced Software list

Selecting an image from the client library

If no image can be found from the standard library, then plumbery looks into the client library.

		Example
		Description

		appliance: 'Web server with Chef client'
		Select a client image with this name

 © Copyright 2015-206, the community of plumbery users.
 Created using Sphinx 1.3.5.

installing.plumbery.pip.html

 Navigation

 		
 index

 		
 modules |

 		plumbery 1.0.4 documentation »

Installing plumbery package

You will need the latest version of the Python 2.7 language, which you can download for Linux, Mac and Windows at
the following address:

http://python.org/download/releases/2.7/

You need pip, a package management system, to install modules related to plumbery.
Should your Linux system not have pip installed, run this command:

$ sudo apt-get install python-pip

For Windows users: look in folder C:Python27Scripts after the installation of Python 2.7, this is where
the pip executable has been put.

Install Apache Libcloud

The orchestration of cloud services is a hot topic these days. Apache Libcloud may be among the most popular
solutions based on python. This is the one that we have selected for plumbery:

On Linux or on Mac OSX:

$ sudo pip install apache-libcloud

On Windows:

> pip install apache-libcloud

Install the plumbery package

Plumbery is available as a python package, so the installation, the upgrade,
and the removal of the software are really easy.

Install the plumbery package

Plumbery is available on PyPi [https://pypi.python.org/pypi/plumbery]. You can install latest stable version using pip.

On Linux or on Mac OSX:

$ sudo apt-get install python-pip python-dev
$ sudo pip install plumbery

The installation of python-dev is required for the installation of the module
netifaces, that is used by Plumbery to get information about network interfaces.

On Windows:

For installation on Windows, you may need to first install the Python Compiler for VC++. https://www.microsoft.com/en-us/download/confirmation.aspx?id=44266
Note this only works for Python 2.7. If you get an error on installation saying “error: Unable to find vcvarsall.bat” this indicates you need to install this package.

> pip install virtualenv
> virtualenv.exe .
> .\Script\pip install plumbery

Upgrade the plumbery package

Use the following command to retrieve the version of plumbery that has been
installed on a computer:

$ python -m plumbery -v

You can compare this information with reference information posted at
Plumbery package at PiPy [https://pypi.python.org/pypi/plumbery]. If you have used pip to install the software,
then you can use it again to upgrade the package:

$ sudo pip install --upgrade plumbery

Remove the plumbery package

Why would you bother about a small set of files at a computer? Anyway, if needed
here is the command to remove Plumbery from a python environment:

$ sudo pip uninstall plumbery

 © Copyright 2015-206, the community of plumbery users.
 Created using Sphinx 1.3.5.

plumbery.polishers.inventory.html

 Navigation

 		
 index

 		
 modules |

 		plumbery 1.0.4 documentation »

plumbery.polishers.inventory module

 © Copyright 2015-206, the community of plumbery users.
 Created using Sphinx 1.3.5.

plumbery.fittings.ethernet.html

 Navigation

 		
 index

 		
 modules |

 		plumbery 1.0.4 documentation »

plumbery.fittings.ethernet module

 © Copyright 2015-206, the community of plumbery users.
 Created using Sphinx 1.3.5.

plumbery.polishers.information.html

 Navigation

 		
 index

 		
 modules |

 		plumbery 1.0.4 documentation »

plumbery.polishers.information module

 © Copyright 2015-206, the community of plumbery users.
 Created using Sphinx 1.3.5.

tutorial.kubernetes.html

 Navigation

 		
 index

 		
 modules |

 		plumbery 1.0.4 documentation »

Kubernetes pod

Docker is notoriously difficult to deploy in a sophisticated environment. For
example, no routing is provided natively between containers, so you may
have to configure multiple tunnels and address translation rules to deliver
end-to-end connectivity.

By contrast, the ambition of Kubernetes is to leverage the underlying
networking infrastructure, and to provide containers at scale. Well, before
we consider the deployment of hundreds of pods, maybe it would help to start
with a single one, in order to learn.

[image: _images/tutorial.kubernetes.png]
In this tutorial we demonstrate how to create a class of Kubernetes nodes and
deploy one single node. Of course, you can use this file for yourself, and change it
to better accomodate your requirements.

Requirements for this use case

		Add a Network Domain

		Add an Ethernet network

		Deploy a large Ubuntu server

		Provide 32 CPU and 256 MB of RAM to each node

		Add a virtual disk of 100 GB

		Monitor this server in the real-time dashboard

		Assign a public IPv4 address

		Add address translation to ensure end-to-end IP connectivity

		Add firewall rule to accept TCP traffic on ssh and web ports

		Combine the virtual disks into a single expanded logical volume (LVM)

		Install a new SSH key to secure remote communications

		Configure SSH to reject passwords and to prevent access from root account

		Remove Apache

		Install Go, Docker, Calico and Kubernetes itself

Fittings plan

Copy the text below and put it in a text file named fittings.yaml:

		 1
 2
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165

 defaults:

 # the same network domain is used at various facilities
 #
 domain:
 name: KubernetesFox
 description: "Kubernetes nodes"
 service: essentials
 ipv4: auto

 # the same ethernet configuration is used at various facilities
 #
 ethernet:
 name: KubernetesNetwork
 subnet: 192.168.20.0

 # default settings for a Kubernetes node
 #
 kubernetesNode:

 description: "#kubernetes #ubuntu"

 information:
 - "ssh ubuntu@{{ node.public }}"
 - "sudo su"
 - "cd /root/kubernetes"
 - "cluster/kubectl.sh get services"
 - "cluster/kubectl.sh run my-nginx --image=nginx --replicas=2 --port=80"
 - "cluster/kubectl.sh get pods"

 appliance: 'Ubuntu 14'

 # plenty of compute power
 #
 cpu: 32
 memory: 256

 # enough storage space
 #
 disks:
 - 1 100 standard

 # make the node accessible from the Internet
 #
 glue:
 - internet 22 80

 # allow for monitoring from the global dashboard
 #
 monitoring: essentials

 # contextualise this node
 #
 cloud-config:

 hostname: "{{ node.name }}"

 packages:
 - ntp

 write_files:

 - path: /root/hosts.awk
 content: |
 #!/usr/bin/awk -f
 /^{{ node.private }}/ {next}
 /^{{ node.ipv6 }}/ {next}
 {print}
 END {
 print "{{ node.private }} {{ node.name }}"
 print "{{ node.ipv6 }} {{ node.name }}"
 }

 runcmd:

 - echo "===== Growing LVM with added disk"
 - pvcreate /dev/sdb
 - vgextend rootvol00 /dev/sdb
 - lvextend -l +100%FREE /dev/mapper/rootvol00-rootlvol00
 - resize2fs /dev/mapper/rootvol00-rootlvol00

 - echo "===== Handling ubuntu identity"
 - cp -n /etc/ssh/ssh_host_rsa_key /home/ubuntu/.ssh/id_rsa
 - cp -n /etc/ssh/ssh_host_rsa_key.pub /home/ubuntu/.ssh/id_rsa.pub
 - chown ubuntu:ubuntu /home/ubuntu/.ssh/*
 - sed -i "/StrictHostKeyChecking/s/^.*$/ StrictHostKeyChecking no/" /etc/ssh/ssh_config

 - echo "===== Updating /etc/hosts"
 - cp -n /etc/hosts /etc/hosts.original
 - awk -f /root/hosts.awk /etc/hosts >/etc/hosts.new && mv /etc/hosts.new /etc/hosts

 - echo "===== Cleaning packages"
 - apt-get remove apache2 -y
 - apt-get autoremove -y

 - echo "===== Installing Go"
 - apt-get install git software-properties-common gcc git -y
 - add-apt-repository ppa:evarlast/golang1.4 -y
 - apt-get update
 - apt-get install golang -y

 - echo "===== Installing Docker Engine"
 - curl -sSL https://get.docker.com/ | sh
 - usermod -aG docker ubuntu

 - echo "===== Installing Calico"
 - add-apt-repository ppa:cory-benfield/project-calico -y
 - apt-get update
 - apt-get install etcd

 - echo "===== Installing Kubernetes"
 - cd /root
 - git clone https://github.com/kubernetes/kubernetes.git
 - cd kubernetes
 - hack/local-up-cluster.sh &
 - ./build/run.sh hack/build-cross.sh

 - cluster/kubectl.sh config set-cluster local --server=http://127.0.0.1:8080 --insecure-skip-tls-verify=true
 - cluster/kubectl.sh config set-context local --cluster=local
 - cluster/kubectl.sh config use-context local

 # default settings for all nodes created by plumbery
 #
 cloud-config:

 # ask plumbery to generate a random key pair
 #
 ssh_keys:
 rsa_private: |
 {{ key.rsa_private }}
 rsa_public: "{{ key.rsa_public }}"

 # the ubuntu account will use this key as well
 #
 users:
 - default

 - name: ubuntu
 sudo: 'ALL=(ALL) NOPASSWD:ALL'
 ssh-authorized-keys:
 - "{{ key.rsa_public }}"
 - "{{ local.rsa_public }}"

 # prevent remote access from root
 #
 disable_root: true

 # force authentication with SSH key -- no password allowed
 #
 ssh_pwauth: false

 # duplicate the below to deploy another node at another location, e.g. NA12 in dd-na, etc
 #

 locationId: AU9
 regionId: dd-au

 blueprints:

 - kubernetes:
 nodes:
 - kubernetes-AU9:
 default: kubernetesNode

Deployment commands

$ python -m plumbery fittings.yaml deploy

These commands will build fittings as per the provided plan, start the server
and bootstrap it.

You can find the public address assigned to the server like this:

$ python -m plumbery fittings.yaml information

Follow-up commands

In this use case you can use the IPv4 assigned to the node for direct ssh
connection.

$ ssh ubuntu@<ipv4_here>

You will have to accept the new host, and authentication will be based on
the SSH key communicated to the node by Plumbery.

Then you can use the Kubernetes controller software to validate the setup:

$ sudo su
$ cd /root/kubernetes
$ cluster/kubectl.sh get services
$ cluster/kubectl.sh run my-nginx --image=nginx --replicas=2 --port=80
$ cluster/kubectl.sh get pods

The last command should show the two instances of nginx running.

Destruction commands

Launch following command to remove all resources involved in the fittings plan:

$ python -m plumbery fittings.yaml dispose

 © Copyright 2015-206, the community of plumbery users.
 Created using Sphinx 1.3.5.

tutorial.first.html

 Navigation

 		
 index

 		
 modules |

 		plumbery 1.0.4 documentation »

My first server on the MCP

Because of sophisticated features brought by the Managed Cloud Platform,
you have to create some infrastructure before landing your first server.
In this tutorial we show how to automate tedious tasks with a couple of
straightforward statements.

Requirements for this use case

		Deploy at Frankfurt in Europe

		Create a Network Domain

		Create an Ethernet network (a VLAN)

		Deploy a first sample server

		Add the server to the automated monitoring dashboard

		Assign a public IPv4 address to the server

		Add address translation to ensure end-to-end IP connectivity

		Add firewall rule to accept TCP traffic on port 22 (ssh)

Fittings plan

Copy the text below and put it in a text file named fittings.yaml:

		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13

		 locationId: EU6
 regionId: dd-eu

 blueprints:

 - myBluePrint:
 domain:
 name: myDC
 ethernet:
 name: myVLAN
 subnet: 10.1.10.0
 nodes:
 - myServer

In this example the server MyServer is placed in a
network named MyNetwork, and the network is part of a network
domain acting as a virtual data centre, MyDataCentre. Feel free to change
these to any values that would better suit you.

Some notes on directives used in these fittings plan:

locationId: EU6 and regionId: dd-eu - The region defines the API
endpoint used by plumbery, and the location designates the target data centre
in the region. Look at the table below to select your preferred location.

		City
		locationId
		regionId

		Amsterdam (Netherlands)
		EU7
		dd-eu

		Ashburn (US East)
		NA9
		dd-na

		Frankfurt (Germany)
		EU6
		dd-eu

		Hong Kong
		AP5
		dd-ap

		London (UK)
		EU8
		dd-eu

		Melbourne (Australia)
		AU10
		dd-au

		New-Zealand
		AU11
		dd-au

		Santa Clara (US West)
		NA12
		dd-na

		Singapore
		AP3
		dd-ap

		Sydney (Australia)
		AU9
		dd-au

		Tokyo (Japan)
		AP4
		dd-ap

ipv4: 2 - This is to reserve some public IPv4 addresses. Here we
anticipate on the public address assigned to the server.

glue: - This directive adds connectivity to a node, either by assigning
a public IPv4 address to the Internet, or by adding network interfaces to
additional networks. With internet 22, Plumbery assigns a public IPv4
address and adds a NAT rule. The firewall is also
configured to accept only ssh traffic on port 22.

monitoring: essential - Automatically adds monitoring to this node after
its creation.

Deployment commands

$ python -m plumbery fittings.yaml build
$ python -m plumbery fittings.yaml start

These two commands will build fittings as per the provided plan, and start
the server as well. Look at messages displayed by plumbery while it is
working, so you can monitor what’s happening.

Follow-up commands

In this use case you can use the IPv4 assigned to the node for direct ssh
connection.

$ ssh root@<ipv4_here>

You will have to accept the new host, then provide the password used for the
creation of the server. This is the one put in MCP_PASSWORD environment
of the computer that is running plumbery.

After that you can do whatever you want on this first host. For example:

$ apt-get update
$ apt-get upgrade

Destruction commands

Cloud computing has a hard rule. Any resource has a cost, be it used or not.
At the end of every session, you are encouraged to destroy everything.
Hopefully, plumbery is making this really simple:

$ python -m plumbery fittings.yaml dispose

 © Copyright 2015-206, the community of plumbery users.
 Created using Sphinx 1.3.5.

fittings.glue.html

 Navigation

 		
 index

 		
 modules |

 		plumbery 1.0.4 documentation »

Connecting nodes to the Internet and to networks

By default, plumbery connects each node to the network that is defined in the same
blueprint. In the following example, the node myServer has a primary
network interface that is plugged into the VLAN myNetwork. Also, the private IPv4
that is assigned to myServer is taken automatically from the subnet associated with myNetwork.

blueprints:

 - myBluePrint:
 domain:
 name: myDC
 ethernet:
 name: myNetwork
 subnet: 10.1.10.0
 nodes:
 - myServer

The directive glue: will be useful to you if you have to depart from this simple
situation. More specifically:

		to set a fixed private IPv4 address to a node

		to add a public IPv4 address and a NAT rule

		to connect the node to multiple networks

The directive is a list of settings, each one being related to a connection, like in the following example:

blueprints:

 - myBluePrint:

 domain:
 name: myDC

 # number of IPv4 addresses to be reserved
 #
 ipv4: 2

 ethernet:
 name: myNetwork
 subnet: 10.1.0.0

 nodes:

 - node1:

 glue:

 # assign 10.1.0.11 to the primary NIC
 - primary .11

 # get a public IPv4 from pool and NAT it to primary NIC and open firewall
 - internet 22

 # add secondary NIC
 - SecondaryNetwork .11

 # add third NIC
 - TertiaryNetwork 10.3.0.11

How to set a fixed private IPv4 address?

The basic syntax is to mention the name of the primary network, followed by the private IPv4 address to be used.
There are some other possibilities to consider, that can help to streamline the overall configuration.

		All these are equivalent
		Description

		- myNetwork 10.1.0.11
		Explicit configuration of the network and address

		- myNetwork .11
		Combine with the network subnet to compute the real address

		- primary 10.1.0.11
		The keyword primary is translated to the name of the primary network

		- primary .11
		Implicit configuration of the network and of the address

All configurations mentioned in the table are equivalent. However, primary .11 is probably the easier format to maintain
over time, since it can adapt automatically to a change in network name or in subnet range.

How to expose a node to the Internet?

When a line starts with the keyword internet then plumbery knows that it has to assign a public IPv4 address, to add a NAT rule, and to add
firewall rules as well.

		Examples
		Description

		- internet icmp
		Add a public IPv4 address, a NAT rule, and allow for ping traffic, but not more

		- internet 22
		Allow for ssh traffic from public Internet

		- internet icmp 22 80 443
		Allow for ping, ssh, http and https traffic from public Internet

		- internet 22 80 1935 9123 udp:16384..32768
		Good for real-time web conferences with BigBlueButton servers

Note: since public IPv4 addresses are needed for this configuration, you have to adjust the directive ipv4: accordingly.
See Defining network domains for more information.

How to connect a node to multiple networks?

If a node has to be connected to multiple networks,
Simply add one line per target network to deploy a node with multiple connections. If you mention only the name of a network,
an IPv4 address will be automatically assigned from the related subnet. Else you can explicit a private IPv4 address if needed.

		Examples
		Description

		- SecondaryNetwork
		Add a NIC and an IPv4 address from the related subnet

		- SecondaryNetwork 10.2.0.11
		Add a NIC and assign this address to it

		- SecondaryNetwork .11
		Add a NIC and combine with the subnet to compute the resulting address

Important note: when a virtual network interface is added to a node there may be a need to alter the configuration
of the operating system as well. For example, edit /etc/network/interface under Ubuntu to add eth1 and to configure it.

 © Copyright 2015-206, the community of plumbery users.
 Created using Sphinx 1.3.5.

contributing.actions.html

 Navigation

 		
 index

 		
 modules |

 		plumbery 1.0.4 documentation »

How to extend Plumbery with polishers?

Polishers are the foreseen extension mechanism for plumbery. It allows anyone to create a python script derived from PlumberyPolisher,
and ask plumbery to invoke it from the command line. Plumbery will look at every live node and pass it to the polisher.
Functionally, it is equivalent to “for node in listAllNodes(): polish(node)”.

For the time being, plumbery has 4 polishers:
- configure – this polisher is launched automatically by plumbery when blueprints are built. It wait for nodes to be created, then assign IP public addresses, manages pools for load balancers, and the like
- ansible – this polisher builds an inventory file that can be used directly with ansible. Quite useful if ansible and plumbery have been installed on the same machine…
- inventory – dump a YAML inventory of all known information about nodes. This could be put in a database, or used for inspection…
- prepare – execute post-start commands via ssh

Prepare can be quite useful, yet it is not intended to supplement an efficient configuration management system.
For example, ansible can be far more efficient in installing and configuring docker than plumbery is.
Maybe we should limit prepare to configure some client software in a global configuration system.
For example: install a chef client and provide the IP address of the chef server. Or do the same with Puppet, etc. You get the idea.

 © Copyright 2015-206, the community of plumbery users.
 Created using Sphinx 1.3.5.

tutorial.apache2.cluster.html

 Navigation

 		
 index

 		
 modules |

 		plumbery 1.0.4 documentation »

Cluster of Apache2 web servers

In this tutorial we will deploy multiple web servers, and arrange
them in a single pool driven by a load-balancer.

Requirements for this use case

		Deploy a cluster of 10 web servers in London

		Add a Network Domain

		Add an Ethernet network

		Deploy 10 utility web servers

		Monitor these servers

		Pool these servers

		Add a listener and configure load-balancing

Fittings plan

Copy the text below and put it in a text file named fittings.yaml:

		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29

		 # London
 locationId: EU8
 regionId: dd-eu

 blueprints:

 - web:

 domain:
 name: Acme
 ipv4: 2
 service: advanced

 ethernet:
 name: acme.control
 subnet: 10.0.0.0

 nodes:

 - web[1..10]:
 description: '#apache #eu'
 monitoring: essentials

 listeners:

 - http:
 port: 80
 protocol: http
 algorithm: round_robin

Some notes on directives used in these fittings plan:

ipv4: 2 - Some public address is required for the listening address
of the load-balancer

web[1..10]_eu8 - This notation allows to handle multiple nodes in a
compact directive. Here plumbery will create web1_eu8, web2_eu8, etc.
Indicate the minimum and the maximum numbers, and plumbery will populate
the full range. This is so powerful for collections of similar nodes!

prepare: - These are directives reserved to the polisher prepare, and applied
to each node via ssh connection. The first step is to copy a Puppet manifest
to each node with put prepare.puppet.apache.pp /root/apache.pp. Then a script
is applied to install Puppet, and to apply the provided manifest.

listeners: - On this directive, Plumbery will put all nodes of this
blueprint in the same pool, and configure the load-balancer. Settings provided
in this sample plan are adapted to a bare web server.

Deployment commands

$ python -m plumbery fittings.yaml deploy

This command will build fittings as per the provided plan, and start
the target node also.

Follow-up commands

Ideally each web server would be connected to a Puppet server for automatic
configuration of the cluster. Here we have provided a simplistic example
of a masterless configuration, to give you an idea.

Destruction commands

The more servers you have, the more costly it is. Would you like to stop the
invoice?

$ python -m plumbery fittings.yaml stop
$ python -m plumbery fittings.yaml destroy

 © Copyright 2015-206, the community of plumbery users.
 Created using Sphinx 1.3.5.

contributing.coding.html

 Navigation

 		
 index

 		
 modules |

 		plumbery 1.0.4 documentation »

How to code for or with Plumbery?

This page describes Plumbery development process and contains general
guidelines and information on how to contribute to the project.

If you are looking for the code itself, you could look at documentation
extracted from pyton source files: Module Index and Index. And then
of course there is the Plumbery repository at GitHub [https://github.com/bernard357/plumbery] to browse everything.

We welcome contributions of any kind (ideas, code, tests, documentation,
examples, ...). Everything that is given to the community will be governed
by the Apache License (2.0) [http://www.apache.org/licenses/LICENSE-2.0].

		Any non-trivial change must contain tests. For more information, refer to the
Testing section below.

		All the functions and methods must contain Sphinx docstrings which are used
to generate the API documentation. For more information, refer to the
Docstring conventions section below.

		If you are adding a new feature, make sure to add a corresponding
documentation.

Code style guide

		We follow PEP8 Python Style Guide [http://www.python.org/dev/peps/pep-0008/]

		Use 4 spaces for a tab

		Use 79 characters in a line

		Make sure edited file doesn’t contain any trailing whitespace

		You can verify that your modifications don’t break any rules by running the
flake8 script - e.g. flake8 plumbery/edited_file.py or
make lint.
Second command will run flake8 on all the files in the repository.

And most importantly, follow the existing style in the file you are editing and
be consistent.

Code conventions

This section describes some general code conventions you should follow when
writing code for Plumbery.

Import ordering

Organize the imports in the following order:

		Standard library imports

		Third-party library imports

		Local library (plumbery) imports

Each section should be separated with a blank line. For example:

import sys
import base64

import paramiko

from plumbery.polisher import PlumberyPolisher
from plumbery.nodes import PlumberyNodes

Function and method ordering

Functions in a module and methods on a class should be organized in the
following order:

		“Public” functions / methods

		“Private” functions / methods (methods prefixed with an underscore)

		“Internal” methods (methods prefixed and suffixed with a double underscore)

For example:

class Unicorn(object):
 def __init__(self, name='fluffy'):
 self._name = name

 def make_a_rainbow(self):
 pass

 def _get_rainbow_colors(self):
 pass

 def __eq__(self, other):
 return self.name == other.name

Methods on a polisher class should be organized in the following order:

		Methods which are part of the standard API

		Extension methods

		“Private” methods (methods prefixed with an underscore)

		“Internal” methods (methods prefixed and suffixed with a double underscore)

Methods which perform a similar functionality should be grouped together and
defined one after another.

For example:

class MyPolisher(object):
 def __init__(self):
 pass

 def go(self, engine):
 pass

 def move_to(self, facility):
 pass

 def shine_container(self, container):
 pass

 def shine_node(self, node, settings, container):
 pass

 def ex_proud_extension(self):
 pass

 def _to_representation(self, stuff):
 pass

Methods should be ordered this way for the consistency reasons and to make
reading and following the generated API documentation easier.

Prefer keyword over regular arguments

For better readability and understanding of the code, prefer keyword over
regular arguments.

Good:

some_method(public_ips=public_ips, private_ips=private_ips)

Bad:

some_method(public_ips, private_ips)

Don’t abuse **kwargs

You should always explicitly declare arguments in a function or a method
signature and only use **kwargs and *args respectively when there is a
valid use case for it.

Using **kwargs in many contexts is against Python’s “explicit is better
than implicit” mantra and makes it for a bad and a confusing API. On top of
that, it makes many useful things such as programmatic API introspection hard
or impossible.

A use case when it might be valid to use **kwargs is a decorator.

Good:

def my_method(self, name, description=None, public_ips=None):
 pass

Bad (please avoid):

def my_method(self, name, **kwargs):
 description = kwargs.get('description', None)
 public_ips = kwargs.get('public_ips', None)

When returning a dictionary, document its structure

Dynamic nature of Python can be very nice and useful, but if (ab)use it in a
wrong way it can also make it hard for the API consumer to understand what is
going on and what kind of values are being returned.

If you have a function or a method which returns a dictionary, make sure to
explicitly document in the docstring which keys the returned dictionary
contains.

Prefer to use “is not None” when checking if a variable is provided or defined

When checking if a variable is provided or defined, prefer to use
if foo is not None instead of if foo.

If you use if foo approach, it’s easy to make a mistake when a valid value
can also be falsy (e.g. a number 0).

For example:

class SomeClass(object):
 def some_method(self, domain=None):
 params = {}

 if domain is not None:
 params['Domain'] = domain

Docstring conventions

For documenting the API we we use Sphinx and reStructuredText syntax. Docstring
conventions to which you should adhere to are described below.

		Docstrings should always be used to describe the purpose of methods,
functions, classes, and modules.

		Method docstring should describe all the normal and keyword arguments. You
should describe all the available arguments even if you use *args and
**kwargs.

		All parameters must be documented using :param p: or :keyword p:
and :type p: annotation.

		:param p: ... - A description of the parameter p for a function
or method.

		:keyword p: ... - A description of the keyword parameter p.

		:type p: ... The expected type of the parameter p.

		Return values must be documented using :return: and :rtype
annotation.

		:return: ... A description of return value for a function or method.

		:rtype: ... The type of the return value for a function or method.

		Required keyword arguments must contain (required) notation in
description. For example: :keyword image: OS Image to boot on node. (required)

		Multiple types are separated with or
For example: :type auth: :class:`.NodeAuthSSHKey` or :class:`.NodeAuthPassword`

		For a description of the container types use the following notation:
<container_type> of <objects_type>. For example:
:rtype: `list` of :class:`Node`

For more information and examples, please refer to the following links:

		Sphinx Documentation - http://sphinx-doc.org/markup/desc.html#info-field-lists

Testing

Running all tests

To run the tests manually, you first need to install all of the dependencies
mentioned above. After that simply go to the root of the repository and use the
following command:

PYTHONPATH=. make test

Running one test file

To run the tests located in a single test file, move to the root of the
repository and run the following command:

PYTHONPATH=. python tests/<path to test file>

For example:

PYTHONPATH=. python tests/test_engine.py

Generating test coverage report

To generate the test coverage run the following command:

PYTHONPATH=. make coverage

When it completes you should see a new coverage_html_report directory which
contains the test coverage.

 © Copyright 2015-206, the community of plumbery users.
 Created using Sphinx 1.3.5.

fittings.disks.html

 Navigation

 		
 index

 		
 modules |

 		plumbery 1.0.4 documentation »

Configuring virtual disks

Plumbery has the ability to adjust virtual disks attached to a node, like in the following example:

nodes:

 - myServer:

 disks:

 # resize system disk to 80 GB
 #
 - 0 80

 # add a 100 GB disk for economy storage
 #
 - 1 100 economy

Components of each disks: directive

		Component
		Required
		Description

		disk id
		yes
		An integer between 0 and 9. The value 0 designates the system disk

		size in GB
		yes
		An integer between 10 and 1000

		class of storage
		no
		Either standard (default) or highperformance or economy

How to partition and configure virtual disks?

Any change of virtual disks made at the infrastructure level has to be reflected into the operating system itself.
For example, explicit decision is required on number and sizes of partitions.
You may want to use one file system or another, depending of requirements for the storage sub-system.
In case of storage virtualisation, there is also an option to combine multiple virtual disks in a single
logical volume and file system.

Cloud-config can be a convenient Trojan horse to perform such tasks, as demonstrated in following examples.

How to resize system disk of a Linux server?

LVM is used for Ubuntu standard images, so the resizing of system disk is quite easy.

nodes:

 - myServer:

 appliance: 'Ubuntu 14'

 # augment system disk
 #
 disks:
 - 0 50 standard

 cloud-config:

 runcmd:

 - echo "===== Growing LVM with expanded disk"
 - lvextend -l +100%FREE /dev/mapper/rootvol00-rootlvol00
 - resize2fs /dev/mapper/rootvol00-rootlvol00

How to add high-performance storage on Linux?

This case is a bit more complicated because of the partitioning, etc.
Hopefully cloud-config can help us to push some scripts to the target
node and to execute them.

nodes:

 - myServer:

 appliance: 'Ubuntu 14'

 # add a disk from high-performance tier of storage
 #
 disks:
 - 1 100 highperformance

 cloud-config:

 write_files:

 - path: /root/set_pdisk.sh
 content: |
 #!/usr/bin/env bash
 if [! -b ${1}1]; then
 echo "===== Partioning ${1}"
 cat <<EOF | fdisk ${1}
 n
 p
 1

 t
 8e
 w
 EOF
 echo "===== Creating LVM physical disk ${1}1"
 pvcreate ${1}1
 fi

 - path: /root/set_vdisk.sh
 content: |
 #!/usr/bin/env bash
 if [-z "$(blkid ${1})"];
 then
 echo "===== Formatting ${1}"
 mkfs -t ${2} ${1}
 fi
 UUID=$(blkid ${1} | sed -n 's/.*UUID=\"\([^\"]*\)\".*/\1/p')

 if ! grep -q "${UUID}" /etc/fstab; then
 echo "===== Adding ${1} to fstab"
 LINE="UUID=\"${UUID}\"\t${3}\t${2}\tnoatime,nodiratime,nodev,noexec,nosuid\t1 2"
 echo -e "${LINE}" >> /etc/fstab
 fi

 echo "===== Mounting ${3}"
 [-d "${3}"] || mkdir -p "${3}"
 mount "${3}"

 runcmd:

 - echo "===== Handling additional disk"
 - chmod +x /root/set_pdisk.sh
 - /root/set_pdisk.sh /dev/sdb

 - echo "===== Configuring /dev/sdb1 for high-performance storage"
 - vgcreate highperformancevg /dev/sdb1
 - lvcreate -l 100%FREE -n highperformancelv highperformancevg
 - chmod +x /root/set_vdisk.sh
 - /root/set_vdisk.sh /dev/highperformancevg/highperformancelv ext4 /highperformance

After complete configuration, everything written to /highperformance will benefit from best performance levels.

 © Copyright 2015-206, the community of plumbery users.
 Created using Sphinx 1.3.5.

fittings.defaults.html

 Navigation

 		
 index

 		
 modules |

 		plumbery 1.0.4 documentation »

Using defaults

In the first document of a fittings file, you can add a defaults: directive. This will contain default attributes for each of the nodes in the blueprints of subsequent documents.

For example:

defaults:

 # all nodes will have this description by default
 #
 description: "Deployed using Plumbery"

 # all nodes will have at least these cloud-init settings
 #
 cloud-config:
 ssh_keys:
 rsa_private: |
 {{ key.rsa_private }}
 rsa_public: "{{ key.rsa_public }}"
 users:
 - default
 - name: ubuntu
 sudo: 'ALL=(ALL) NOPASSWD:ALL'
 ssh-authorized-keys:
 - "{{ key.rsa_public }}"
 - "{{ local.rsa_public }}"
 disable_root: true
 ssh_pwauth: false

This will mean that every node deployed will have SSH keys, the ubuntu user, root disabled and a description of “Deployed using plumbery”.

Declaring classes of nodes

If the keyword default is used for the configuration of a node, then plumbery will look for related settings, like in the folloowing example:

defaults:

 master-node:
 description: "this is a master node"

 slave-node:
 description: "this is a slave node"

blueprints:

 - masters:

 master01:
 default: master-node
 description: "I am the master"

 master02:
 default: master-node

 - slaves:

 slave01:
 default: slave-node

This approach saves a lot of typings, and avoid duplications. It is recommended when a fittings file is relying on multiple similar nodes.

Declaring default network domain and network

In many cases the same network domain and VLAN are used across multiple blueprints. In that case you are advised to put related definitions only once, in the defaults section.

Example:

defaults:

 domain:
 name: MyDomain

 ethernet:
 name: MyNetwork

location Id: EU6

blueprints:

 - blueprint1:

 # no need to repeat domain: nor ethernet: here, default settings will apply

location Id: NA12

blueprints:

 - blueprint1:

 # no need to repeat domain: nor ethernet: here, default settings will apply

In the case of multi-geography deployments, this approach ensures that the infrastructure will be configured the same way everywhere.

 © Copyright 2015-206, the community of plumbery users.
 Created using Sphinx 1.3.5.

plumbery.polishers.prepare.html

 Navigation

 		
 index

 		
 modules |

 		plumbery 1.0.4 documentation »

plumbery.polishers.prepare module

 © Copyright 2015-206, the community of plumbery users.
 Created using Sphinx 1.3.5.

polishers.html

 Navigation

 		
 index

 		
 modules |

 		plumbery 1.0.4 documentation »

Polishing extensions

		plumbery.polishers.ansible module

		plumbery.polishers.configure module

		plumbery.polishers.information module

		plumbery.polishers.inventory module

		plumbery.polishers.ping module

		plumbery.polishers.prepare module

 © Copyright 2015-206, the community of plumbery users.
 Created using Sphinx 1.3.5.

fittings.facility.html

 Navigation

 		
 index

 		
 modules |

 		plumbery 1.0.4 documentation »

Selecting a data centre

		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13

		 regionId: dd-eu
 locationId: EU6

 blueprints:

 - myBluePrint:
 domain:
 name: myDC
 ethernet:
 name: myVLAN
 subnet: 10.1.10.0
 nodes:
 - myServer

In this example the server MyServer is placed in a
network named MyNetwork, and the network is part of a network
domain acting as a virtual data centre, MyDataCentre.

The overarching location of these resources is defined by locationId: EU6 and regionId: dd-eu.

How to select a public data centre?

The directive regionId: defines the API endpoint used by plumbery, while
locationId: selects a data centre in the region.

The table below provides a table of public data centres that are available
with this approach.

		City
		locationId
		Region
		regionId

		Amsterdam (Netherlands)
		EU7
		Europe
		dd-eu

		Ashburn (US East)
		NA9
		United States
		dd-na

		Brussels (Belgium)
		EU9
		Europe
		dd-eu

		Frankfurt (Germany)
		EU6
		Europe
		dd-eu

		Hong Kong
		AP5
		Asia-Pacific
		dd-ap

		Johannesburg (South Africa)
		AF3
		Africa
		dd-af

		London (UK)
		EU8
		Europe
		dd-eu

		Melbourne (Australia)
		AU10
		Australia
		dd-au

		New-Zealand
		AU11
		Australia
		dd-au

		Santa Clara (US West)
		NA12
		North America
		dd-na

		Singapore
		AP3
		Asia-Pacific
		dd-ap

		Sydney (Australia)
		AU9
		Australia
		dd-au

		Tokyo (Japan)
		AP4
		Asia-Pacific
		dd-ap

		Toronto
		CA2
		Canada
		dd-ca

In simplest cases, plumbery can deduce the region from the location. In other terms,
if you mention locationId then you may drop the regionId directive.

For example:

locationId: EU6

blueprints:
 ...

How to select a private data centre?

Private data centres installed by Dimension Data have their own API endpoint.
To drive plumbery to the right place you can use the directive apiHost: and
then designate the data centre with locationId:.

For example:

information:
 - "Private deployment example"

apiHost: my-private-cloud.com
locationId: MY1
blueprints:
 ...

 © Copyright 2015-206, the community of plumbery users.
 Created using Sphinx 1.3.5.

tutorial.nodejs.html

 Navigation

 		
 index

 		
 modules |

 		plumbery 1.0.4 documentation »

Node.js server

Are you more familiar with javascript? Ok, let’s continue with a
different flavour of web site, powered by node.js.

Requirements for this use case

		Add a Network Domain

		Add an Ethernet network

		Deploy a Ubuntu server

		Monitor this server

		Assign a public IPv4 address

		Add address translation to ensure end-to-end IP connectivity

		Add firewall rule to accept TCP traffic on port 22 (ssh) and 80 (web)

		Install Node.js

		Install a javascript to serve the home page

Fittings plan

Copy the text below and put it in a text file named fittings.yaml:

		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58

 locationId: EU6 # Frankfurt in Europe
 regionId: dd-eu

 blueprints:

 - nodejs:

 domain:
 name: NodejsFox
 service: essentials
 ipv4: 2

 ethernet:
 name: nodejsfox.servers
 subnet: 192.168.20.0

 nodes:
 - nodejs02:

 cpu: 2
 memory: 8
 monitoring: essentials
 glue:
 - internet 22 8080

 information:
 - "open a browser at http://{{ node.public }}:8080/ to view it live"

 cloud-config:
 disable_root: false
 ssh_pwauth: True

 bootcmd:
 - "curl -sL https://deb.nodesource.com/setup_4.x | sudo -E bash -"

 packages:
 - ntp
 - git
 - nodejs

 write_files:

 - path: /root/hello.js
 content: |
 var http = require('http');
 http.createServer(function (req, res) {
 res.writeHead(200, {'Content-Type': 'text/html'});
 res.end('<h2>Hello World</h2>\nThis is a warm welcome from plumbery {{ plumbery.version }}');
 }).listen(8080, '0.0.0.0');
 console.log('Server running at http://{{ node.public }}:8080/');

 runcmd:
 - npm install pm2 -g
 - rm /etc/init.d/pm2-init.sh
 - pm2 startup
 - pm2 start /root/hello.js
 - pm2 save

Deployment commands

$ python -m plumbery fittings.yaml deploy

These commands will build fittings as per the provided plan, start the server
and bootstrap it.

You can find the public address assigned to the web server like this:

$ python -m plumbery fittings.yaml ping

Follow-up commands

Open a browser window and paste the public address reported by plumbery.
You should receive a welcome page in return.

Destruction commands

The more servers you have, the more costly it is. Would you like to stop the
invoice?

$ python -m plumbery fittings.yaml stop
$ python -m plumbery fittings.yaml destroy

 © Copyright 2015-206, the community of plumbery users.
 Created using Sphinx 1.3.5.

fittings.domain.html

 Navigation

 		
 index

 		
 modules |

 		plumbery 1.0.4 documentation »

Defining network domains

Each blueprint can contain one domain configuration, like in the following exemple:

domain:
 description: "Demonstration of server orchestration at Dimension Data"
 name: MyDataCentre
 service: advanced
 ipv4: 2

Fitting attributes

		Attribute
		Required
		Description

		name
		yes
		Name of the network domain

		description
		no
		Description of the network domain, that can include hashtags. No default

		service
		no
		Either essentials (default) or advanced

		ipv4
		no
		Quantity of public IPv4 addresses, or auto. Default is 0

The attribute ipv4: is used in conjunction with glue:. See Connecting nodes to the Internet and to networks for more information on this topic.

 © Copyright 2015-206, the community of plumbery users.
 Created using Sphinx 1.3.5.

fittings.beachhead.html

 Navigation

 		
 index

 		
 modules |

 		plumbery 1.0.4 documentation »

How to connect plumbery to remote nodes?

For most of the infrastructure plumbery interacts with the API endpoint. This is
how domains, networks, and nodes are deployed. This is also how network and security directives are configured.

Beyond that point, there is a need for plumbery to interact directly with the nodes. For example,
to pass commands over ssh. Or to bootstrap nodes with cloud-init. In such situations there
is a need for direct connectivity between the machine that is running plumbery and some target node.

Connect over public Internet

When a node has been assigned a public IPv4 address then plumbery just uses it. So the easiest way
to ensure such connectivity is to use glue: as in following example:

blueprints:

 - myBluePrint:

 ethernet:
 name: myNetwork
 subnet: 10.1.0.0

 nodes:

 - myServer:

 glue:
 - internet 22

With this setup the node myServer is becoming reachable over ssh. This can be used directly by
plumbery or by a human being for remote administration.

Connect over IPv6

If target node has not been assigned a public IPv4 address, then plumbery looks for IPv6 end-to-end
connectivity. This can only happen if the machine that is running plumbery has a routable IPv6 address for itself.

For example, if you run plumbery on a server in some MCP, it will get an IPv6 address automatically.
For the provision of end-to-end IPv6 connectivity there is a need to add a firewall rule.

For example, if the plumbery machine has been deployed on plumberyNetwork, you could use following directives:

blueprints:

 - myBluePrint:

 ethernet:
 name: myNetwork
 subnet: 10.1.0.0
 accept:

 # accept traffic from plumbery node
 #
 - plumberyNetwork

 nodes:
 - myServer:

Connect over private IPv4

In the case where the target node has no public IPv4 address, and plumbery has no IPv6 address, there is a high risk
that end-to-end connectivity cannot be achieved.

A simple strategy could be that plumbery just tries to connect over ssh and complains eventually. However, this heuristic
involves very long time out delays, and therefore it is very inefficient with a significant number of nodes.

At some point it has been decided to allow only explicit connectivity in such situation. The directive beachhead: contains
a list of private IPv4 addresses that are eligible for remote connectivity.

For example:

the node running plumbery has to be configured with this address
#
beachhead: 10.1.0.121

blueprints:

 - myBluePrint:

 ethernet:
 name: myNetwork
 subnet: 10.1.0.0

 nodes:
 - myServer:

 cloud-config:
 ...

 © Copyright 2015-206, the community of plumbery users.
 Created using Sphinx 1.3.5.

tutorial.elk.html

 Navigation

 		
 index

 		
 modules |

 		plumbery 1.0.4 documentation »

Centralised logging with Elasticsearch, Logstash, and Kibana

In this tutorial, we will go over the installation of Elasticsearch, Logstash,
and Kibana, the so-called ELK stack. Logstash is an open source tool for
collecting, parsing, and storing logs for future use. Kibana is a web interface
that can be used to search and view the logs that Logstash has indexed. Both
Logstash and Kibana rely on Elasticsearch for powerful storage and retrieval
of information. The ELK combination provides an effective service that allow
system administrators to consolidate logs from various parts of their information
systems, and to dig into global logs visually when required.

Centralized logging can be very useful when attempting to identify problems with
your servers or applications, as it allows you to search through all of your
logs in a single place. It is also useful because it allows you to identify
issues that span multiple servers by correlating their logs during a specific time frame.

It is possible to use Logstash to gather logs of all types, but we will limit
the scope of this tutorial to syslog gathering. We will demonstrate in this
tutorial how a remote server can be equipped to export logs automatically and
securely to the ELK facility. In the fittings plan below, this is named logstash client.

Requirements for this use case

		Add multiple Network Domains and Ethernet networks to support the distribution of nodes at several data centres

		Deploy one Linux server for the ELK node, and one for each remote node

		Add a virtual disk of 500 GB to the ELK node

		Monitor all nodes in the real-time dashboard provided by Dimension Data

		Assign public IPv4 addresses for ssh access over the Internet

		Add address translation to ensure end-to-end IP connectivity

		Add firewall rule to accept TCP traffic on port 22 (ssh)

		Add firewall rule to allow web traffic to Kibana

		Allow IPv6 traffic between remote nodes and the ELK node

		Expand file system of the ELK node with added disk (LVM)

		Install a new SSH key to secure remote communications across all nodes

		Update etc/hosts to bind IPv6 addresses to host names

		Manage keys to suppress passwords in SSH connections

		Install Elasticsearch, Logstash and Kibana to the ELK node

		Install Logstash to every other node

		Create a private key and self-signed certificate at the ELK node to secure Logstash operations over IPv6

		Install the certificate at every other node to secure communications from Logstash client software

Fittings plan

The plan below demonstrates multiple interesting tips and tricks:

		Provide SSH access to all nodes via public IPv4, NAT, and firewall settings

		Management of SSH keys to enable secured communications without passwords

		Allow private IPv6 communications between remote nodes and the ELK node

		Automatic registration of all nodes to the monitoring services provided by Dimension Data

		Update of etc/hosts with IPv6

		Remove Apache, and install Nginx instead

		Install the full ELK stack

		Configure Nginx as efficient and secured proxy to Kibana

		Orchestrate generation and configuration of web password to the Kibana dashboard

		Automate the installation of Oracle 8 JDK

		User documentation of the infrastructure is put directly in the fittings plan

Download this fittings plan [https://github.com/bernard357/plumbery/blob/master/demos/elk.yaml] if you want to hack it for yourself. This is part of the demonstration
directory of the plumbery project [https://github.com/bernard357/plumbery/tree/master/demos] at GitHub. Alternatively, you can copy the
text below and put it in a text file named fittings.yaml.

		 1
 2
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363

 information:
 - "Centralised logging with Elasticsearch, Logstash, and Kibana."

 links:
 documentation: https://plumbery.readthedocs.org/en/latest/tutorial.elk.html
 credit: http://www.exonet3i.net/evernote/How%20To%20Install%20Elasticsearch,%20Logstash,%20and%20K%20%5B3%5D.html

 defaults:

 # the same network domain is used at various facilities
 #
 domain:
 name: ELKFox
 description: "Demonstration of Elasticsearch, Logstash and Kibana"
 ipv4: auto

 # the same ethernet configuration is used at various facilities
 #
 ethernet:
 name: ELKNetwork
 subnet: 10.0.0.0

 # default settings for a remote logger
 #
 logstashForwarder:

 description: "#logstash-forwarder #ubuntu"

 information:
 - "a remote server with logstash-forwarder"

 appliance: 'Ubuntu 14'

 cpu: 2
 memory: 4

 glue:
 - internet 22

 monitoring: essentials

 cloud-config:

 hostname: "{{ node.name }}"

 packages:
 - ntp

 write_files:

 - path: /root/hosts.awk
 content: |
 #!/usr/bin/awk -f
 /^{{ node.private }}/ {next}
 /^{{ node.ipv6 }}/ {next}
 /^{{ dd-au::AU10::logstashServer.ipv6 }}/ {next}
 {print}
 END {
 print "{{ node.private }} {{ node.name }}"
 print "{{ node.ipv6 }} {{ node.name }}"
 print "{{ dd-au::AU10::logstashServer.ipv6 }} logstashServer"
 }

 - path: /root/logstash-forwarder.conf
 content: |
 {
 "network": {
 "servers": ["{{ dd-au::AU10::logstashServer.ipv6 }}:5000"],
 "timeout": 15,
 "ssl ca": "/etc/logstash-pki/logstash-forwarder.crt"
 },

 "files": [
 {
 "paths": [
 "/var/log/syslog",
 "/var/log/auth.log"
],
 "fields": { "type": "syslog" }
 }
]
 }

 runcmd:

 - echo "===== Handling ubuntu identity"
 - cp -n /etc/ssh/ssh_host_rsa_key /home/ubuntu/.ssh/id_rsa
 - cp -n /etc/ssh/ssh_host_rsa_key.pub /home/ubuntu/.ssh/id_rsa.pub
 - chown ubuntu:ubuntu /home/ubuntu/.ssh/*
 - sed -i "/StrictHostKeyChecking/s/^.*$/ StrictHostKeyChecking no/" /etc/ssh/ssh_config

 - echo "===== Updating /etc/hosts"
 - cp -n /etc/hosts /etc/hosts.original
 - awk -f /root/hosts.awk /etc/hosts >/etc/hosts.new && mv /etc/hosts.new /etc/hosts

 - echo "===== Installing logstash-forwarder"
 - cd /root
 - wget -qO - https://packages.elastic.co/GPG-KEY-elasticsearch | sudo apt-key add -
 - echo "deb http://packages.elastic.co/logstashforwarder/debian stable main" | sudo tee /etc/apt/sources.list.d/logstashforwarder.list
 - apt-get update
 - apt-get install logstash-forwarder

 - echo "===== Securing logstash-forwarder"
 - sleep 1m
 - mkdir /etc/logstash-pki
 - rsync -zhave "ssh -i /home/ubuntu/.ssh/id_rsa" ubuntu@logstashServer:/var/rsync/logstash-forwarder.crt /etc/logstash-pki

 - echo "===== Configuring logstash"
 - cp -n /etc/logstash-forwarder.conf /etc/logstash-forwarder.conf.origin
 - cp /root/logstash-forwarder.conf /etc/logstash-forwarder.conf
 - service logstash-forwarder restart

 # default settings for all nodes created by plumbery
 #
 cloud-config:

 # plumbery generates a random key pair
 #
 ssh_keys:
 rsa_private: |
 {{ key.rsa_private }}
 rsa_public: "{{ key.rsa_public }}"

 users:
 - default

 - name: ubuntu
 sudo: 'ALL=(ALL) NOPASSWD:ALL'
 ssh-authorized-keys:
 - "{{ key.rsa_public }}"
 - "{{ local.rsa_public }}"

 - name: root
 ssh-authorized-keys:
 - "{{ key.rsa_public }}"
 - "{{ local.rsa_public }}"

 disable_root: false
 ssh_pwauth: false

 locationId: AU10
 regionId: dd-au

 blueprints:

 - logstash:

 ethernet:
 accept:
 - dd-ap::AP5::ELKNetwork

 nodes:

 - logstashServer: # a combo of logstash, elasticsearch, and kibana

 description: "#logstash #elasticsearch #dashboard #kibana #ubuntu"

 information:
 - "a web dashboard to visualize logs:"
 - "http://{{ node.public }}"
 - "authenticate with 'dashboard' and '{{ dashboard.secret }}'"
 - "troubleshoot with:"
 - "$ ssh ubuntu@{{ node.public }}"
 - "check the feeding of elasticsearch with:"
 - "$ curl 'http://localhost:9200/_cat/indices?v'"
 - "validate the configuration of logstash with:"
 - "$ service logstash configtest"

 appliance: 'Ubuntu 14'

 cpu: 2
 memory: 4

 disks:
 - 1 500 standard

 glue:
 - internet 22 80

 monitoring: essentials

 cloud-config:

 hostname: "{{ node.name }}"

 bootcmd:

 # remove apache
 - apt-get remove apache2 -y
 - apt-get autoremove -y

 # automate acceptance of oracle licence
 - echo "oracle-java8-installer shared/accepted-oracle-license-v1-1 select true" | sudo debconf-set-selections
 - echo "oracle-java8-installer shared/accepted-oracle-license-v1-1 seen true" | sudo debconf-set-selections

 apt_sources:
 - source: "ppa:webupd8team/java"

 packages:
 - ntp
 - oracle-java8-installer
 - nginx
 - apache2-utils
 - python-pip

 write_files:

 - path: /root/hosts.awk
 content: |
 #!/usr/bin/awk -f
 /^{{ node.private }}/ {next}
 /^{{ node.ipv6 }}/ {next}
 /^{{ logstash-AU10.ipv6 }}/ {next}
 /^{{ dd-ap::AP5::logstash-AP5.ipv6 }}/ {next}
 {print}
 END {
 print "{{ node.private }} {{ node.name }}"
 print "{{ node.ipv6 }} {{ node.name }}"
 print "{{ logstash-AU10.ipv6 }} logstash-AU10"
 print "{{ dd-ap::AP5::logstash-AP5.ipv6 }} logstash-AP5"
 }

 - path: /root/nginx-sites-available-default
 content: |
 server {
 listen 80;

 server_name {{ node.public }};

 auth_basic "Restricted Access";
 auth_basic_user_file /etc/nginx/htpasswd.users;

 location / {
 proxy_pass http://localhost:5601;
 proxy_http_version 1.1;
 proxy_set_header Upgrade $http_upgrade;
 proxy_set_header Connection 'upgrade';
 proxy_set_header Host $host;
 proxy_cache_bypass $http_upgrade;
 }
 }

 - path: /root/logstash-conf.d-01-lumberjack-input.conf
 content: |
 input {
 lumberjack {
 port => 5000
 type => "logs"
 ssl_certificate => "/etc/pki/tls/certs/logstash-forwarder.crt"
 ssl_key => "/etc/pki/tls/private/logstash-forwarder.key"
 }
 }

 - path: /root/logstash-conf.d-10-syslog.conf
 content: |
 filter {
 if [type] == "syslog" {
 grok {
 match => { "message" => "%{SYSLOGTIMESTAMP:syslog_timestamp} %{SYSLOGHOST:syslog_hostname} %{DATA:syslog_program}(?:\[%{POSINT:syslog_pid}\])?: %{GREEDYDATA:syslog_message}" }
 add_field => ["received_at", "%{@timestamp}"]
 add_field => ["received_from", "%{host}"]
 }
 syslog_pri { }
 date {
 match => ["syslog_timestamp", "MMM d HH:mm:ss", "MMM dd HH:mm:ss"]
 }
 }
 }

 - path: /root/logstash-conf.d-30-lumberjack-output.conf
 content: |
 output {
 elasticsearch { hosts => localhost }
 stdout { codec => rubydebug }
 }

 - path: /root/etc-cron.d-elasticsearch_curator
 content: |
 @midnight root curator delete --older-than 120 >> /var/log/curator.log 2>&1

 runcmd:

 - echo "===== Growing LVM with added disk"
 - pvcreate /dev/sdb
 - vgextend rootvol00 /dev/sdb
 - lvextend -l +100%FREE /dev/mapper/rootvol00-rootlvol00
 - resize2fs /dev/mapper/rootvol00-rootlvol00

 - echo "===== Handling ubuntu identity"
 - cp -n /etc/ssh/ssh_host_rsa_key /home/ubuntu/.ssh/id_rsa
 - cp -n /etc/ssh/ssh_host_rsa_key.pub /home/ubuntu/.ssh/id_rsa.pub
 - chown ubuntu:ubuntu /home/ubuntu/.ssh/*
 - sed -i "/StrictHostKeyChecking/s/^.*$/ StrictHostKeyChecking no/" /etc/ssh/ssh_config

 - echo "===== Updating /etc/hosts"
 - cp -n /etc/hosts /etc/hosts.original
 - awk -f /root/hosts.awk /etc/hosts >/etc/hosts.new && mv /etc/hosts.new /etc/hosts

 - echo "===== Installing logstash, elasticsearch, kibana"
 - cd /root
 - wget -qO - https://packages.elastic.co/GPG-KEY-elasticsearch | sudo apt-key add -
 - echo "deb http://packages.elastic.co/elasticsearch/2.x/debian stable main" | sudo tee -a /etc/apt/sources.list.d/elasticsearch-2.x.list
 - echo "deb http://packages.elastic.co/kibana/4.4/debian stable main" | sudo tee -a /etc/apt/sources.list.d/kibana-4.4.x.list
 - echo "deb http://packages.elastic.co/logstash/2.2/debian stable main" | sudo tee -a /etc/apt/sources.list.d/logstash-2.2.x.list
 - apt-get update
 - apt-get install logstash elasticsearch kibana
 - update-rc.d elasticsearch defaults 95 10
 - service elasticsearch start
 - update-rc.d kibana defaults 96 9
 - service kibana start

 - echo "===== Securing logstash"
 - cp -n /etc/ssl/openssl.cnf /etc/ssl/openssl.cnf.origin
 - sed -i "/# subjectAltName=email:copy/s/^.*$/subjectAltName = IP:{{ node.ipv6 }}/" /etc/ssl/openssl.cnf
 - mkdir /etc/logstash-pki
 - cd /etc/logstash-pki
 - openssl req -config /etc/ssl/openssl.cnf -x509 -days 3650 -batch -nodes -newkey rsa:2048 -keyout logstash-forwarder.key -out logstash-forwarder.crt
 - openssl x509 -in logstash-forwarder.crt -text -noout

 - echo "===== Sharing certificate for remote access"
 - mkdir /var/rsync
 - cp /etc/logstash-pki/logstash-forwarder.crt /var/rsync
 - chown -R ubuntu:ubuntu /var/rsync

 - echo "===== Configuring logstash"
 - cp /root/logstash-conf.d-01-lumberjack-input.conf /etc/logstash/conf.d/01-lumberjack-input.conf
 - cp /root/logstash-conf.d-10-syslog.conf /etc/logstash/conf.d/10-syslog.conf
 - cp /root/logstash-conf.d-30-lumberjack-output.conf /etc/logstash/conf.d/30-lumberjack-output.conf
 - service logstash restart

 - echo "===== Securing web access to Kibana"
 - cp -n /etc/nginx/sites-available/default /etc/nginx/sites-available/default.original
 - cp /root/nginx-sites-available-default /etc/nginx/sites-available/default
 - htpasswd -cb /etc/nginx/htpasswd.users dashboard {{ dashboard.secret }}
 - service nginx restart

 - echo "===== Installing Curator to purge old logs"
 - pip install elasticsearch-curator
 - cp /root/etc-cron.d-elasticsearch_curator /etc/cron.d/elasticsearch_curator

 - logstash-AU10:
 default: logstashForwarder

 locationId: AP5
 regionId: dd-ap

 blueprints:

 - bees:

 ethernet:
 accept:
 - dd-au::AU10::ELKNetwork

 nodes:
 - logstash-AP5:
 default: logstashForwarder

Deployment commands

For this tutorial, plumbery has to connect separately to multiple data centres
and to apply several changes in multiple waves.

$ python -m plumbery fittings.yaml deploy

This command will build fittings as per the provided plan, and start
servers as well. Look at messages displayed by plumbery while it is
working, so you can monitor what’s happening.

Follow-up commands

At the end of the deployment, plumbery will display on screen some instructions
to help you move forward. You can ask plumbery to display this information
at any time with the following command:

$ python -m plumbery fittings.yaml information

What’s coming next? You may want to connect to the ELK node in ssh and
check the stream of records coming from remote nodes via Logstash.

$ ssh ubuntu@<IPv4 of ELK node>
$ curl 'http://localhost:9200/_cat/indices?v'

Repeat the command multiple times and check the increment of documents indexed
by Elasticsearch.

If everything is looking fine at this stage, then you are allowed to move
to the configuration of the Kibana interactive dashboard. In a browser window,
type the public IPv4 address of the ELK node. When asked for it, provide
the name and the password that were mentioned by plumbery during the deployment
of the fittings plan.

From there you can configure the dashboard as per your
very specific needs.

Destruction commands

Launch following command to remove all resources involved in the fittings plan:

$ python -m plumbery fittings.yaml dispose

 © Copyright 2015-206, the community of plumbery users.
 Created using Sphinx 1.3.5.

plumbery.polishers.backup.html

 Navigation

 		
 index

 		
 modules |

 		plumbery 1.0.4 documentation »

plumbery.polishers.backup module

 © Copyright 2015-206, the community of plumbery users.
 Created using Sphinx 1.3.5.

_static/file.png

search.html

 Navigation

 		
 index

 		
 modules |

 		plumbery 1.0.4 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2015-206, the community of plumbery users.
 Created using Sphinx 1.3.5.

_static/comment-bright.png

_static/plus.png

_static/up-pressed.png

_static/up.png

_static/comment-close.png

_static/minus.png

_static/ajax-loader.gif

_static/down-pressed.png

tutorial.confluence.html

 Navigation

 		
 index

 		
 modules |

 		plumbery 1.0.4 documentation »

Confluence server from Atlassian

This is a simple Confluence server for your team of developers.

Requirements for this use case

		Add a Network Domain

		Add an Ethernet network

		Deploy a Ubuntu server

		Add server to real-time dashboard

		Assign a public IPv4 address to the server

		Add address translation to ensure end-to-end IP connectivity

		Add firewall rule to accept TCP traffic on port 22 (ssh) and web (8090)

		Install Confluence in unattended mode

Fittings plan

Copy the text below and put it in a text file named fittings.yaml:

		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96

 defaults:

 cloud-config: # default for all nodes created by plumbery

 ssh_keys: # generated randomly, and used on subsequent invocations
 rsa_private: |
 {{ key.rsa_private }}
 rsa_public: "{{ key.rsa_public }}"

 users:
 - default

 - name: ubuntu
 sudo: 'ALL=(ALL) NOPASSWD:ALL'
 ssh-authorized-keys:
 - "{{ key.rsa_public }}"
 - "{{ local.rsa_public }}"

 - name: root
 ssh-authorized-keys:
 - "{{ key.rsa_public }}"
 - "{{ local.rsa_public }}"

 disable_root: false

 ssh_pwauth: false

 locationId: EU8
 regionId: dd-eu

 blueprints:

 - confluence:

 domain:
 name: ConfluenceFox
 description: "Demonstration of a standalone Confluence server"
 service: essentials
 ipv4: 2

 ethernet:
 name: confluencefox.servers
 subnet: 192.168.20.0

 nodes:

 - confluence01:
 cpu: 2
 memory: 4
 monitoring: essentials
 glue:
 - internet 22 8090

 description: "#confluence #atlassian #ubuntu"

 information:
 - "this is a Confluence server for a small team"
 - "connect remotely with a browser at following address:"
 - "http://{{ node.public }}:8090/"

 appliance: 'Ubuntu 14'

 cloud-config:

 packages:
 - ntp

 write_files:

 - path: /root/response.varfile
 content: |
 #install4j response file for Confluence 5.9.4
 #Tue Feb 09 17:27:13 EST 2016
 executeLauncherAction$Boolean=true
 app.install.service$Boolean=true
 sys.confirmedUpdateInstallationString=false
 existingInstallationDir=/usr/local/Confluence
 sys.languageId=en
 sys.installationDir=/opt/atlassian/confluence

 runcmd:

 - echo "===== Handling ubuntu identity"
 - cp -n /etc/ssh/ssh_host_rsa_key /home/ubuntu/.ssh/id_rsa
 - cp -n /etc/ssh/ssh_host_rsa_key.pub /home/ubuntu/.ssh/id_rsa.pub
 - chown ubuntu:ubuntu /home/ubuntu/.ssh/*
 - sed -i "/StrictHostKeyChecking/s/^.*$/ StrictHostKeyChecking no/" /etc/ssh/ssh_config

 - echo "===== Installing Confluence"
 - cd /root
 - wget -nv https://www.atlassian.com/software/confluence/downloads/binary/atlassian-confluence-5.9.4-x64.bin
 - chmod a+x atlassian-confluence-5.9.4-x64.bin
 - ./atlassian-confluence-5.9.4-x64.bin -q -varfile /root/response.varfile

Deployment commands

$ python -m plumbery fittings.yaml deploy

These commands will build fittings as per the provided plan, start the server
and bootstrap it.

You can find the public address assigned to the server like this:

$ python -m plumbery fittings.yaml ping

Follow-up commands

In this use case you can use the IPv4 assigned to the manager for direct web
browsing, but on unusual port number:

http://<ipv4_here>:8090/

This command is self-explanatory and validates the system installation.

Destruction commands

The more servers you have, the more costly it is. Would you like to stop the
invoice?

$ python -m plumbery fittings.yaml dispose

 © Copyright 2015-206, the community of plumbery users.
 Created using Sphinx 1.3.5.

plumbery.polishers.monitoring.html

 Navigation

 		
 index

 		
 modules |

 		plumbery 1.0.4 documentation »

plumbery.polishers.monitoring module

 © Copyright 2015-206, the community of plumbery users.
 Created using Sphinx 1.3.5.

tutorial.openvpn.html

 Navigation

 		
 index

 		
 modules |

 		plumbery 1.0.4 documentation »

OpenVPN gateway

This is a basic installation of a VPN gateway, directly in the cloud.

Requirements for this use case

		Add a Network Domain

		Add an Ethernet network

		Deploy a CentOS server

		Monitor this server

		Assign a public IPv4 address

		Add address translation to ensure end-to-end IP connectivity

		Add firewall rule to accept TCP traffic on port 22 (ssh) and 943 (openvpn)

		Install OpenVPN

		Change the password of the openvpn account

Fittings plan

Copy the text below and put it in a text file named fittings.yaml:

		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

 locationId: NA12
 regionId: dd-na

 blueprints:

 - openvpn:

 domain:
 name: OpenvpnFox
 service: essentials
 ipv4: 2

 ethernet:
 name: openvpnfox.servers
 subnet: 192.168.20.0

 nodes:

 - openvpn01:

 appliance: 'CentOS 7 64-bit'
 cpu: 2
 memory: 4
 monitoring: essentials
 glue:
 - internet 22 943

 information:
 - "You can access the server at https://{{ node.public }}:943"
 - "Provide name: openvpn and password: {{ openvpn.secret }}"

 cloud-config:
 disable_root: false
 ssh_pwauth: true
 expire: False
 packages:
 - ntp
 runcmd:
 - curl -O http://swupdate.openvpn.org/as/openvpn-as-2.0.24-CentOS7.x86_64.rpm
 - rpm -i openvpn-as-2.0.24-CentOS7.x86_64.rpm
 - echo "{{ openvpn.secret }}" | passwd --stdin openvpn

Deployment commands

$ python -m plumbery fittings.yaml deploy

These commands will build fittings as per the provided plan, start the server
and bootstrap it.

You can find the public address assigned to the web server like this:

$ python -m plumbery fittings.yaml ping

Follow-up commands

Open a browser window and paste the public address reported by plumbery.
You should receive a welcome HTML page in return.

Destruction commands

The more servers you have, the more costly it is. Would you like to stop the
invoice?

$ python -m plumbery fittings.yaml stop
$ python -m plumbery fittings.yaml destroy

 © Copyright 2015-206, the community of plumbery users.
 Created using Sphinx 1.3.5.

tutorial.docker.swarm.html

 Navigation

 		
 index

 		
 modules |

 		plumbery 1.0.4 documentation »

Docker Swarm with multiple containers

This is a cluster of coordinated Docker Engine nodes. This is behaving like
a swarm, with one queen (the manager) and seven bees (the workers). The demonstration
also covers the installation of Consul as a dynamic registry across nodes.

Requirements for this use case

		Add a Network Domain

		Add an Ethernet network

		Deploy a Ubuntu server as a manager – the queen

		Deploy multiple large Ubuntu servers as Docker containers – the bees

		Monitor all servers

		Assign a public IPv4 address to each server

		Add address translation rules to ensure Internet connectivity with each server

		Add firewall rules to accept TCP traffic on port 22 (ssh)

		Install Docker Engine at all servers

		Install Consul on the manager node to implement dynamic discovery back-end

		Run Docker Swarm Manager at the queen

		Run Docker Swarm at every other bee

Fittings plan

Copy the text below and put it in a text file named fittings.yaml:

		 1
 2
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223

 defaults:

 cloud-config: # default for all nodes created by plumbery

 ssh_keys: # generated randomly, and used on subsequent invocations
 rsa_private: |
 {{ key.rsa_private }}
 rsa_public: "{{ key.rsa_public }}"

 users:
 - default

 - name: ubuntu
 sudo: 'ALL=(ALL) NOPASSWD:ALL'
 ssh-authorized-keys:
 - "{{ key.rsa_public }}"
 - "{{ local.rsa_public }}"

 - name: root
 ssh-authorized-keys:
 - "{{ key.rsa_public }}"
 - "{{ local.rsa_public }}"

 disable_root: false

 ssh_pwauth: false

 locationId: AU10
 regionId: dd-au

 blueprints:

 - swarm: queen bees

 - queen: # the master node for the full swarm

 domain: &domain
 name: DockerSwarmFox
 description: "Demonstration of a Docker swarm"
 ipv4: auto

 ethernet: ðernet
 name: dockerSwarmNetwork
 subnet: 10.0.0.0

 nodes:
 - queen:

 description: "#docker #swarm #queen #ubuntu"

 information:
 - "a Docker engine acting as the queen for the full swarm"
 - "connect remotely with:"
 - "$ ssh ubuntu@{{ queen.public }}"
 - "check status of local docker with:"
 - "$ docker info"
 - "check swarm status with:"
 - "$ docker -H :4000 info"
 - "run redis in a container somewhere with:"
 - "$ docker -H :4000 run --name some-redis -d redis"
 - "check which node is running redis with:"
 - "$ docker -H :4000 ps -l | grep redis"

 appliance: 'Ubuntu 14'

 cpu: 8
 memory: 32

 glue:
 - internet 22

 monitoring: essentials

 cloud-config:

 hostname: "{{ node.name }}"

 packages:
 - ntp

 write_files:

 - path: /root/hosts.awk
 content: |
 #!/usr/bin/awk -f
 /^{{ queen.private }}/ {next}
 /^{{ bee1.private }}/ {next}
 /^{{ bee2.private }}/ {next}
 /^{{ bee3.private }}/ {next}
 /^{{ bee4.private }}/ {next}
 /^{{ bee5.private }}/ {next}
 /^{{ bee6.private }}/ {next}
 /^{{ bee7.private }}/ {next}
 {print}
 END {
 print "{{ queen.private }} queen"
 print "{{ bee1.private }} bee1"
 print "{{ bee2.private }} bee2"
 print "{{ bee3.private }} bee3"
 print "{{ bee4.private }} bee4"
 print "{{ bee5.private }} bee5"
 print "{{ bee6.private }} bee6"
 print "{{ bee7.private }} bee7"
 }

 - path: /root/docker.sed
 content: |
 #!/usr/bin/sed
 s/#DOCKER_OPTS/DOCKER_OPTS/
 s|\-\-dns 8.8.8.8 \-\-dns 8.8.4.4|-H tcp://{{ node.private }}:2375 -H unix:///var/run/docker.sock|

 runcmd:

 - echo "===== Handling ubuntu identity"
 - cp -n /etc/ssh/ssh_host_rsa_key /home/ubuntu/.ssh/id_rsa
 - cp -n /etc/ssh/ssh_host_rsa_key.pub /home/ubuntu/.ssh/id_rsa.pub
 - chown ubuntu:ubuntu /home/ubuntu/.ssh/*
 - sed -i "/StrictHostKeyChecking/s/^.*$/ StrictHostKeyChecking no/" /etc/ssh/ssh_config

 - echo "===== Updating /etc/hosts"
 - cp -n /etc/hosts /etc/hosts.original
 - awk -f /root/hosts.awk /etc/hosts >/etc/hosts.new && mv /etc/hosts.new /etc/hosts

 - echo "===== Installing docker"
 - curl -sSL https://get.docker.com/ | sh
 - sed -i -f /root/docker.sed /etc/default/docker
 - restart docker
 - usermod -aG docker ubuntu
 - su ubuntu -c "docker run hello-world"

 - echo "===== Running consul"
 - docker run -d -p 8500:8500 --name=consul --restart=always -h {{ node.name }} progrium/consul -server -bootstrap -advertise {{ node.private }}

 - echo "===== Running swarm manager"
 - docker run -d -p 4000:4000 --name=swarmMgr --restart=always swarm manage -H :4000 --advertise {{ node.private }}:4000 consul://{{ node.private }}:8500
 - docker ps

 - bees: # some bees contributing to the swarm

 domain: *domain
 ethernet: *ethernet
 nodes:
 - bee[1..7]:

 description: "#docker #swarm #bee #ubuntu"

 information:
 - "a Docker engine acting as a worker bee for the full swarm"

 appliance: 'Ubuntu 14'

 cpu: 8
 memory: 32

 glue:
 - internet 22

 monitoring: essentials

 cloud-config:

 hostname: "{{ node.name }}"

 packages:
 - ntp

 write_files:

 - path: /root/hosts.awk
 content: |
 #!/usr/bin/awk -f
 /^{{ queen.private }}/ {next}
 /^{{ bee1.private }}/ {next}
 /^{{ bee2.private }}/ {next}
 /^{{ bee3.private }}/ {next}
 /^{{ bee4.private }}/ {next}
 /^{{ bee5.private }}/ {next}
 /^{{ bee6.private }}/ {next}
 /^{{ bee7.private }}/ {next}
 {print}
 END {
 print "{{ queen.private }} queen"
 print "{{ bee1.private }} bee1"
 print "{{ bee2.private }} bee2"
 print "{{ bee3.private }} bee3"
 print "{{ bee4.private }} bee4"
 print "{{ bee5.private }} bee5"
 print "{{ bee6.private }} bee6"
 print "{{ bee7.private }} bee7"
 }

 - path: /root/docker.sed
 content: |
 #!/usr/bin/sed
 s/#DOCKER_OPTS/DOCKER_OPTS/
 s|\-\-dns 8.8.8.8 \-\-dns 8.8.4.4|-H tcp://{{ node.private }}:2375 -H unix:///var/run/docker.sock|

 runcmd:

 - echo "===== Handling ubuntu identity"
 - cp -n /etc/ssh/ssh_host_rsa_key /home/ubuntu/.ssh/id_rsa
 - cp -n /etc/ssh/ssh_host_rsa_key.pub /home/ubuntu/.ssh/id_rsa.pub
 - chown ubuntu:ubuntu /home/ubuntu/.ssh/*
 - sed -i "/StrictHostKeyChecking/s/^.*$/ StrictHostKeyChecking no/" /etc/ssh/ssh_config

 - echo "===== Updating /etc/hosts"
 - cp -n /etc/hosts /etc/hosts.original
 - awk -f /root/hosts.awk /etc/hosts >/etc/hosts.new && mv /etc/hosts.new /etc/hosts

 - echo "===== Installing docker"
 - curl -sSL https://get.docker.com/ | sh
 - sed -i -f /root/docker.sed /etc/default/docker
 - restart docker
 - usermod -aG docker ubuntu
 - su ubuntu -c "docker -H {{ node.name }}:2375 run hello-world"

 - echo "===== Running swarm"
 - sleep 1m
 - docker run -d --name=swarm --restart=always swarm join --advertise={{ node.private }}:2375 consul://{{ queen.private }}:8500
 - docker ps

Deployment commands

$ python -m plumbery fittings.yaml deploy

These commands will build fittings as per the provided plan, start all servers
and bootstrap them.

You can find the public address assigned to the manager server like this:

$ python -m plumbery fittings.yaml ping

Follow-up commands

In this use case you can use the IPv4 assigned to the manager for direct ssh
connection.

$ ssh ubuntu@<ipv4_here>

From there you will check both the status of the local Docker Engine, and the
status from the full Docker Swarm:

$ docker info
$ docker -H :4000 info

Next step is to run a new Redis container somewhere in the swarm:

$ docker -H :4000 run --name some-redis -d redis

And, of course, you may want to identify which node is running redis
exactly:

$ docker -H :4000 ps -l | grep redis

Destruction commands

The more servers you have, the more costly it is. Would you like to stop the
invoice?

$ python -m plumbery fittings.yaml dispose

 © Copyright 2015-206, the community of plumbery users.
 Created using Sphinx 1.3.5.

tutorial.wordpress.html

 Navigation

 		
 index

 		
 modules |

 		plumbery 1.0.4 documentation »

Blog server with Wordpress

Wordpress is an awesome blogging platform that is powered by Apache,
PHP and MySQL. In this tutorial we deploy a ready-to-use server.

Requirements for this use case

		Add a Network Domain

		Add an Ethernet network

		Deploy a Ubuntu server

		Monitor this server

		Assign a public IPv4 address

		Add address translation to ensure end-to-end IP connectivity

		Add firewall rule to accept TCP traffic on port 22 (ssh) and 80 (web)

		Install Apache2 and PHP

		Install MySQL and create a first database

		Install Wordpress

Fittings plan

Copy the text below and put it in a text file named fittings.yaml:

		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62

 locationId: EU7 # Amsterdam in Europe
 regionId: dd-eu

 blueprints:

 - wordpress:

 domain:
 name: WordpressFox
 service: essentials
 ipv4: 2

 ethernet:
 name: wordpressfox.servers
 subnet: 192.168.20.0

 nodes:

 - wordpress01:

 cpu: 2
 memory: 4
 monitoring: essentials
 glue:
 - internet 22 80

 information:
 - "open a browser at http://{{ node.public }}/ to view it live"
 - "administration user name is: wpuser"
 - "and the password when asked: {{ random.secret }}"

 cloud-config:
 disable_root: false
 ssh_pwauth: true
 packages:
 - ntp
 - apache2
 - mysql-server
 - libapache2-mod-php5
 - php5-mysql

 write_files:

 - path: /root/wordpress_db.sql
 content: |
 create database wordpress;
 create user 'wpuser'@'localhost' identified by '{{ random.secret }}';
 grant all privileges on wordpress.* to 'wpuser'@'localhost';
 flush privileges;
 drop database test;
 drop user 'test'@'localhost';
 flush privileges;

 runcmd:
 - cp -n /var/www/html/index.html /var/www/html/index.html.deprecated
 - wget http://wordpress.org/latest.tar.gz -P /tmp/
 - tar -zxf /tmp/latest.tar.gz -C /tmp/
 - sudo mv /tmp/wordpress/* /var/www/html/
 - sudo chown -R www-data:www-data /var/www
 - mysql -e "source /root/wordpress_db.sql"
 - mysqladmin -u root password '{{ random.secret }}'

You can note how SQL instructions are transmitted to the server
directly from within fittings plan.

Deployment commands

$ python -m plumbery fittings.yaml deploy

This command build fittings as per the provided plan, start the server
and bootstrap it. The last command will display the name and password
used to configure the database.

You can find the public address assigned to the web server like this:

$ python -m plumbery fittings.yaml ping

Follow-up commands

Open a browser window and paste the public address reported by plumbery.
This should display the setup page of wordpress. Paste secrets (name and password)
that were displayed by plumbery previously. Enjoy Wordpress!

Destruction commands

The more servers you have, the more costly it is. Would you like to stop the
invoice?

$ python -m plumbery fittings.yaml stop
$ python -m plumbery fittings.yaml destroy

 © Copyright 2015-206, the community of plumbery users.
 Created using Sphinx 1.3.5.

plumbery.polishers.ansible.html

 Navigation

 		
 index

 		
 modules |

 		plumbery 1.0.4 documentation »

plumbery.polishers.ansible module

 © Copyright 2015-206, the community of plumbery users.
 Created using Sphinx 1.3.5.

fittings.backup.html

 Navigation

 		
 index

 		
 modules |

 		plumbery 1.0.4 documentation »

Configuring cloud backup

Plumbery can orchestrate Cloud Backup, like in the following example:

nodes:

 - myServer:

 backup:
 plan: enterprise
 clients:
 - type: file
 schedulePolicy: 12AM - 6AM
 storagePolicy: 14 Day Storage Policy
 - type: mysql
 schedulePolicy: 12AM - 6AM
 storagePolicy: 14 Day Storage Policy
 trigger: ON_SUCCESS_AND_FAILURE
 email: me@me.com

 © Copyright 2015-206, the community of plumbery users.
 Created using Sphinx 1.3.5.

fittings.ethernet.html

 Navigation

 		
 index

 		
 modules |

 		plumbery 1.0.4 documentation »

Defining Ethernet networks

Each blueprint can contain one ethernet directive, like in the following exemple:

ethernet:
 name: myVlan1
 subnet: 192.168.20.0
 accept:
 - myVlan2

Fitting attributes

		Attribute
		Required
		Description

		name
		yes
		A name for the VLAN

		description
		no
		A description of the VLAN, that can include hashtags. No default

		subnet
		yes
		The private IPv4 /24 network address to be used

		accept
		no
		A list of networks that are entitled to send traffic to this network

How to allow traffic between multiple networks?

The accept directive is translated by plumbery into additional firewall rules automatically. This allows for easy setup, like in the following example of a 3-tier application:

blueprints:

 - dmz:

 ethernet:
 name: dmzNetwork
 subnet: 10.0.1.0
 accept:
 - applicationNetwork

 - application:

 ethernet:
 name: applicationNetwork
 subnet: 10.0.2.0
 accept:
 - dmzNetwork
 - databaseNetwork

 - database:

 ethernet:
 name: databaseNetwork
 subnet: 10.0.3.0
 accept:
 - applicationNetwork

 © Copyright 2015-206, the community of plumbery users.
 Created using Sphinx 1.3.5.

tutorial.beachhead.html

 Navigation

 		
 index

 		
 modules |

 		plumbery 1.0.4 documentation »

How to beachhead on the MCP?

In many cloud deployments, the appropriate strategy is to run administration
servers directly in the cloud. This usually facilitates a lot end-to-end
connectivity to the other nodes.

For example, Dimension Data provides IPv6 connectivity to every virtual server.
However, very few infrastructure managers do have IPv6 at their workstation.
Therefore the recommendation to deploy a seminal server to the cloud
infrastructure, since this machine will benefit from IPv6 end-to-end.

Requirements for this use case

		Add a Network Domain

		Add an Ethernet network

		Deploy a Ubuntu server named beachhead

		Monitor this server

		Assign a public IPv4 address to beachhead

		Add address translation to ensure end-to-end IP connectivity

		Add firewall rule to accept TCP traffic on port 22 (ssh)

		Install python, libcloud and plumbery

Fittings plan

Copy the text below and put it in a text file named fittings.yaml:

		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40

		 locationId: NA12
 regionId: dd-na

 blueprints:

 - beachhead:

 domain:
 name: Acme
 ipv4: 2

 ethernet:
 name: acme.control
 subnet: 10.0.0.0

 nodes:

 - beachhead:

 description: '#beachhead #ops'

 glue:
 - internet 22

 running: always
 monitoring: essentials

 cloud-config:

 disable_root: false
 ssh_pwauth: True

 packages:
 - python-pip
 - python-dev
 - git

 runcmd:
 - pip install -e git+https://github.com/apache/libcloud.git#egg=apache-libcloud
 - pip install -e git+https://github.com/DimensionDataCBUSydney/plumbery.git#egg=plumbery

In this example, the plan is to deploy a single node in the data centre
at Frankfurt, in Europe. The node beachhead is placed in a
network named acme.control, and the network is part of a network
domain acting as a virtual data centre, Acme. The blueprint has a
name, beachhead, so that it can be handled independently from
other blueprints.

Some notes on directives used in these fittings plan:

service: advanced - Dimension Data provides several flavours of Network
Domains. Here the decision is to deploy an advanced domain

ipv4: 2 - This is to reserve some public IPv4 addresses. Here we anticipate
on the public address assigned to the beachhead node.

glue: - This directive adds connectivity to a node, either by assigning
a public IPv4 address to the Internet, or by adding network interfaces to
additional networks. With internet 22, Plumbery assigns a public IPv4
address and adds a NAT rule to the firewall.

running: always - This directive prevents plumbery from stopping the node.
In other terms, the command python -m plumbery stop is inoperative.
And because plumbery cannot destroy a running node, this directive also
prevents the deletion of beachhead.

monitoring: essential - Automatically adds monitoring to this node after
its creation.

cloud-config - A list of statements that are passed to cloud-init so
that they can be applied to the node during boot sequence. In this example
we install a couple of packages, and run commands to install libcloud
and plumbery itself. There are many ways to use cloud-init, maybe you would
like to check a reference page full of examples [http://cloudinit.readthedocs.org/en/latest/topics/examples.html].

Deployment commands

$ python -m plumbery fittings.yaml deploy

These commands will build fittings as per the provided plan, start the target
node, and apply all cloud-init directives.

Follow-up commands

In this use case you can use the IPv4 assigned to the node for direct ssh
connection.

$ ssh root@<ipv4_here>

You will have to accept the new host, then provide the password used for the
creation of the node beahhead.

After that you can do whatever you want on this server.

 © Copyright 2015-206, the community of plumbery users.
 Created using Sphinx 1.3.5.

modules.html

 Navigation

 		
 index

 		
 modules |

 		plumbery 1.0.4 documentation »

plumbery

		plumbery package
		Subpackages
		plumbery.actions package
		Submodules

		Module contents

		plumbery.fittings package
		Submodules

		Module contents

		plumbery.polishers package
		Submodules

		plumbery.polishers.ansible module

		plumbery.polishers.configure module

		plumbery.polishers.information module

		plumbery.polishers.inventory module

		plumbery.polishers.ping module

		plumbery.polishers.prepare module

		Module contents

		Submodules
		plumbery.action module

		plumbery.bootstrap module

		plumbery.engine module

		plumbery.exception module

		plumbery.facility module

		plumbery.fitting module

		plumbery.infrastructure module

		plumbery.nodes module

		plumbery.plogging module

		plumbery.polisher module

		plumbery.terraform module

		plumbery.text module

		plumbery.util module

		Module contents

 © Copyright 2015-206, the community of plumbery users.
 Created using Sphinx 1.3.5.

tutorial.stackstorm.html

 Navigation

 		
 index

 		
 modules |

 		plumbery 1.0.4 documentation »

Stackstorm DevOps server

In this tutorial a ready-to-use Stackstorm server is deployed.

Requirements for this use case

		Add a Network Domain

		Add an Ethernet network

		Deploy a Ubuntu server

		Monitor this server

		Assign a public IPv4 address

		Add address translation to ensure end-to-end IP connectivity

		Add firewall rule to accept TCP traffic on port 22 (ssh), 80 and 443 (web)

		Install StackStorm

Fittings plan

Copy the text below and put it in a text file named fittings.yaml:

		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37

 locationId: AU10
 regionId: dd-au

 blueprints:

 - stackstorm:

 domain:
 name: StackstormFox
 service: essentials
 ipv4: auto

 ethernet:
 name: stackstorm.ethernet
 subnet: 192.168.20.0

 nodes:

 - stackstorm:

 cpu: 4
 memory: 8
 monitoring: essentials
 glue:
 - internet 22 80 443

 information:
 - "open a browser at https://{{ node.public }}/ to view it live"

 cloud-config:
 disable_root: false
 ssh_pwauth: true
 packages:
 - ntp
 runcmd:
 - curl -sSL https://raw.githubusercontent.com/DimensionDataCBUSydney/st2_dimensiondata/master/install-au.sh | sh

Deployment commands

$ python -m plumbery fittings.yaml deploy

This command will build fittings as per the provided plan, start the server
and bootstrap it.

You can find the public address assigned to the web server like this:

$ python -m plumbery fittings.yaml information

Follow-up commands

Open a browser window and paste the public address reported by plumbery.
You should receive a login page in return.

Destruction commands

The more servers you have, the more costly it is. Would you like to stop the
invoice?

$ python -m plumbery fittings.yaml stop
$ python -m plumbery fittings.yaml destroy

 © Copyright 2015-206, the community of plumbery users.
 Created using Sphinx 1.3.5.

plumbery.fittings.domain.html

 Navigation

 		
 index

 		
 modules |

 		plumbery 1.0.4 documentation »

plumbery.fittings.domain module

 © Copyright 2015-206, the community of plumbery users.
 Created using Sphinx 1.3.5.

_images/tutorial.itop.png
P 0 s, o

ﬁ Infrastructure
Welcome

Configuration Management E] Rack: 1 \g@@W Enclosure: 0 ﬁ Server:4 s Network Device: 2 %Stﬂragesystem:l) EZL, sAN switch: 0

b Gy » CreateanewRack Createanew Enclosure » Createanew Server » Create a new Network Device » Create a new Storage System » Create a new SAN Switch
» Search for Rack objects * Search for Enclosure objects » Search for Server objects * Search for Network Device objects * Search for Storage System objects * Search for SAN Switch objects

Contacts
> New contact

> Search for contacts - Nas:0) Tepe Library: 0 A Power Connection: 0

Locations
New CI

Search for Cls > CreateanewNAS » CreateanewTapelLibrary > Create 2 new Power Connection
Documents > Search for NAS objects * Search for Tape Library objects > Search for Power Connection objects
Software catalog

Groups of Cis

@ Virtualization
Helpdesk
Change management: ﬁ Farm: 2 Cﬁ Hypervisor: 3 Virtual Machine: 4

O » CreateanewFarm » Create a new Hypervisor » Create a new Virtual Machine
» Search for Farm objects * Search for Hypervisor objects * Search for Virtual Machine objects

Data administration

Admin tools ‘!5 End user devices
! PC: 0 g Phone: 0 @ 1P Phone: 0 y’ Mobile Phone: 0 E Tablet: 0 & Printer: 0

Combodo

B ————

» CreateanewPC » CreateanewPhone » CreateanewIPPhone » CreateanewMobilePhone » Createanew Tablet » Createa new Printer
search for PC objects * Search for Phone objects * Search for IP Phone objects * Search for Mobile Phone objects * Search for Tablet objects * Search for Printer objects

_images/tutorial.kubernetes.png
E Master/Worker Node

Docker

eted @

service proxy

kubernetes master @

kubelet

user pod 1 @

user-pod-n

_images/tutorial.mqtt.pinger.swarm.architecture.png
List of targets Dynamic dashboard

MQTT client,
MQTT broker python indexer,
Elasticsearch, Kibana

global private IPv6 backbone

MQTT client, MQTT client, MQTT client, MQTT client,

python pinger python pinger python pinger python pinger

Internet (IPv4)

www.target.com

installing.plumbery.git.html

 Navigation

 		
 index

 		
 modules |

 		plumbery 1.0.4 documentation »

Installing plumbery from GitHub

Maybe you want to upgrade the on-line documentation of Plumbery. For this
you have to edit the .rst files that are in the docs directory. Or you
want to extend plumbery engine, for a new or special usage.
Or you would like to troubleshoot an issue and put some print() statements in
the code. And why not fix a bug or even implement a new feature?

In all these situations, you would like to get a full copy of all files, and
change them at will on your own computer.

Install the plumbery development environment

Some precautions are needed if you really want to contribute to the Plumbery project.
This is not really difficult, if you follow comprehensive instructions provided
at How to contribute to Plumbery?

On the other hand, to dump a full copy of the software then you can clone
the latest development version from Plumbery repository at GitHub [https://github.com/bernard357/plumbery]:

$ sudo apt-get install python-pip python-dev git
$ sudo pip install -e git+https://github.com/bernard357/plumbery.git#egg=plumbery

Remove the plumbery development environment

Type the following command to clean the python runtime:

$ python setup.py develop --uninstall

Then you have to go back to the directory where plumbery was downloaded,
and remove files by yourself.

 © Copyright 2015-206, the community of plumbery users.
 Created using Sphinx 1.3.5.

installing.plumbery-contrib.git.html

 Navigation

 		
 index

 		
 modules |

 		plumbery 1.0.4 documentation »

Getting Started

Are you looking for a kind plumber to assist you in daily cloud deployment and
operations? Here is the most vital information that you need to install and
to use the software.

You need pip, a package management system, to install some of the modules used in this document.
Should your system not have pip installed, run this command:

$ sudo apt-get install python-pip

Install Apache Libcloud

The orchestration of cloud services is a hot topic these days. Apache
Libcloud is evolving swiftly thanks to many contributions. For this reason,
you are encouraged to install the development version of the library:

$ sudo pip install -e git+https://git-wip-us.apache.org/repos/asf/libcloud.git@trunk#egg=apache-libcloud

This version is the one used by Plumbery, and it may be more advanced than
the stable version of Apache Libcloud.

Install the plumbery package

Plumbery is available as a python package, so the installation, the upgrade,
and the removal of the software are really easy.

Install the plumbery package

Plumbery is available on PyPi [https://pypi.python.org/pypi/plumbery]. You can install latest stable version using pip:

$ sudo apt-get install python-pip python-dev
$ sudo pip install plumbery

The installation of python-dev is required for the installation of the module
netifaces, that is used by Plumbery to get information about network interfaces.

For installation on Windows, you may need to first install the Python Compiler for VC++. https://www.microsoft.com/en-us/download/confirmation.aspx?id=44266
Note this only works for Python 2.7. If you get an error on installation saying “error: Unable to find vcvarsall.bat” this indicates you need to install this package.

$ C:\Python27\Scripts\virtualenv.exe .
$.\Script\pip install plumbery

Upgrade the plumbery package

Use the following command to retrieve the version of plumbery that has been
installed on a computer:

$ python -m plumbery -v

You can compare this information with reference information posted at
Plumbery package at PiPy [https://pypi.python.org/pypi/plumbery]. If you have used pip to install the software,
then you can use it again to upgrade the package:

$ sudo pip install --upgrade plumbery

Remove the plumbery package

Why would you bother about a small set of files at a computer? Anyway, if needed
here is the command to remove Plumbery from a python environment:

$ sudo pip uninstall plumbery

If you need the full development environment

Maybe you want to upgrade the on-line documentation of Plumbery. For this
you have to edit the .rst files that are in the docs directory. Or you
want to add a new polisher in plumberypolishers, for a new or special usage.
Or you would like to troubleshoot an issue and put some print() statements in
the code. And why not fix a bug or even implement a new feature?

In all these situations, you would like to get a full copy of all files, and
change them at will on your own computer.

Install the plumbery development environment

Some precautions are needed if you really want to contribute to the Plumbery project.
This is not really difficult, if you follow comprehensive instructions provided
at How to contribute to Plumbery?

On the other hand, to dump a full copy of the software then you can clone
the latest development version from Plumbery repository at GitHub [https://github.com/bernard357/plumbery]:

$ sudo apt-get install python-pip python-dev git
$ sudo pip install -e git+https://github.com/bernard357/plumbery.git#egg=plumbery

Remove the plumbery development environment

Type the following command to clean the python runtime:

$ python setup.py develop --uninstall

Then you have to go back to the directory where plumbery was downloaded,
and remove files by yourself.

Configure and test your installation

This section describes the standard workflow which you follow when working
with Plumbery.

Put secrets into local environment (Linux)

By default Plumbery reads credentials and other secrets from the environment
of the computer where it is running.

If you are running Ubuntu you could do:

$ nano ~/.bash_profile

and type text like the following:

credentials to access cloud resources from Dimension Data
export MCP_USERNAME='*** your account name here ***'
export MCP_PASSWORD='*** your password here ***'

password to access nodes remotely
export SHARED_SECRET='*** password to access nodes ***'

Put secrets into local environment (Windows)

By default Plumbery reads credentials and other secrets from the environment
of the computer where it is running.

Download https://raw.githubusercontent.com/bagder/ca-bundle/master/ca-bundle.crt into %APPDATA%libcloud

[Environment]::SetEnvironmentVariable("MCP_USERNAME", "myusername", "Process")
[Environment]::SetEnvironmentVariable("MCP_PASSWORD", "mypassword!", "Process")
[Environment]::SetEnvironmentVariable("SSL_CERT_FILE", "C:\Users\Anthony\AppData\Roaming\libcloud\ca-bundle.crt", "Process")

Prepare your fittings plan

Since infrastructure is code, your first task is to document your target
deployment into a text file. In the context of Plumbery, this is called
the fittings plan, and it is usually put into a file named fittings.yaml.

With that in hands, you can then use Plumbery to act on the infrastructure and
on nodes. The engine has built-in code to cover the full life cycle:

		build the infrastructure and configure it

		build nodes

		start nodes

		polish nodes – this is to say that some processing is applied to each node

		stop nodes

		destroy nodes

		destroy the infrastructure and release all resources

Check your installation with demonstration files

In the demos directory that is coming with the plumbery development
environment you will find a reference fittings.yaml file. Else you
can download the reference fittings plan [https://raw.githubusercontent.com/bernard357/plumbery/master/demos/fittings.yaml] and use it at will.

To check your installation, you would like to ask plumbery to build a first
inventory of your fittings:

$ cd demos
$ python -m plumbery fittings.yaml inventory

If plumbery reports interactively where it is plumbing and what it is doing,
then your installation is working great. Congratulations!

Then your next ambition may be to pass through a full life cycle, for example
with the following command:

$./sql_lifecycle.sh

This program creates multiple resources, configures them, starts and stops them,
then destroys everything. It takes about 30 minutes to execute in total. A lot
of information is reported on screen, so you have the ability to monitor what
Plumbery is doing, and to understand any problem eventually.

 © Copyright 2015-206, the community of plumbery users.
 Created using Sphinx 1.3.5.

tutorial.ubuntu.desktop.html

 Navigation

 		
 index

 		
 modules |

 		plumbery 1.0.4 documentation »

Ubuntu graphical desktop

While Linux practitioners commonly use the command line to play with servers,
they are cases where a good graphical interface is making life far easier.
In this tutorial a Ubuntu server is deployed, then a desktop is added, then
remote graphical access is provided with VNC.

We also want to add a password to the VNC server, and to tunnel the traffic
in SSH to prevent eyesdropping.

Requirements for this use case

		Add a Network Domain

		Add an Ethernet network

		Deploy a Ubuntu server

		Monitor this server

		Assign a public IPv4 address

		Add address translation to ensure end-to-end IP connectivity

		Add firewall rule to accept TCP traffic on port 22 (ssh)

		Install Ubuntu gnome-based desktop

		Install VNC server

		Configure VNC as a service

Fittings plan

Copy the text below and put it in a text file named fittings.yaml:

		 1
 2
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126

 locationId: NA12
 regionId: dd-na

 blueprints:

 - ubuntu:

 domain:
 name: UbuntuFox
 service: essentials
 ipv4: 2

 ethernet:
 name: ubuntufox.servers
 subnet: 192.168.20.0

 nodes:

 - ubuntu01:

 appliance: 'Ubuntu 14'
 cpu: 2
 memory: 8
 monitoring: essentials
 glue:
 - internet 22 5901

 information:
 - "secure your connection: ssh -L 5901:127.0.0.1:5901 root@{{ node.public }}"
 - "open a VNC viewer at 127.0.0.1:5901 to access the desktop"
 - "enter password {{ vnc.secret }} when asked"

 cloud-config:
 disable_root: false
 ssh_pwauth: True
 packages:
 - ntp
 - expect
 - ubuntu-desktop
 - gnome-session-fallback
 - vnc4server

 write_files:

 - path: /root/.vnc/set_password
 permissions: "0700"
 content: |
 #!/bin/sh
 export USER="root"
 export HOME="/root"
 /usr/bin/expect <<EOF
 spawn "/usr/bin/vncpasswd"
 expect "Password:"
 send "{{ vnc.secret }}\r"
 expect "Verify:"
 send "{{ vnc.secret }}\r"
 expect eof
 exit
 EOF

 - path: /root/.vnc/xstartup
 permissions: "0755"
 content: |
 #!/bin/sh

 export XKL_XMODMAP_DISABLE=1
 unset SESSION_MANAGER
 unset DBUS_SESSION_BUS_ADDRESS

 [-x /etc/vnc/xstartup] && exec /etc/vnc/xstartup
 [-r $HOME/.Xresources] && xrdb $HOME/.Xresources
 xsetroot -solid grey
 vncconfig -iconic &

 gnome-session &
 gnome-panel &
 gnome-settings-daemon &
 metacity &
 nautilus &
 gnome-terminal &

 - path: /etc/init.d/vncserver
 permissions: "0755"
 content: |
 #!/bin/bash
 ### BEGIN INIT INFO
 # Provides: tightvncserver
 # Required-Start:
 # Required-Stop:
 # Default-Start: 2 3 4 5
 # Default-Stop: 0 1 6
 # Short-Description: start vnc server
 # Description:
 ### END INIT INFO

 export USER="root"
 export HOME="/root"

 . /lib/lsb/init-functions

 case "$1" in
 start)
 echo "Starting vncserver on :1"
 vncserver :1 -geometry 1280x800 -depth 24
 ;;

 stop)
 echo "Stopping vncserver on :1"
 vncserver -kill :1
 ;;

 restart)
 $0 stop
 $0 start
 ;;
 *)
 echo "Usage: $0 {start|stop|restart}"
 exit 1
 esac
 exit 0

 runcmd:
 - /root/.vnc/set_password
 - update-rc.d vncserver defaults
 - /etc/init.d/vncserver restart

Some interesting remarks on this fittings plan:

expect - The password used by VNC server is normally entered interactively.
Here the package expect has been added, with a little script, to automate
this interactivity. This is a very powerful mechanism that can be useful
in various situations.

Service installation - The VNC server is installed as an ordinary service via an additional command
in /etc/init.d/ and with update-rc.d

Infrastructure documentation - The information: directive provides
comprehensive instructions to finalise the setup. This is displayed at the end
of the command deploy. It can also be retrieved unattended with the
command information.

Deployment commands

$ python -m plumbery fittings.yaml deploy

This command will build fittings as per the provided plan, start the server
and bootstrap it.

Follow-up commands

You can find instructions to connect, including IP addresses to use, like this:

$ python -m plumbery fittings.yaml information

Of course, you need a VNC viewer on your computer to make it work. As a starting
point you can attempt to enter the following URL in a browser window:

vnc://127.0.0.1:5901

Destruction commands

The more servers you have, the more costly it is. Would you like to stop the
invoice?

$ python -m plumbery fittings.yaml dispose

 © Copyright 2015-206, the community of plumbery users.
 Created using Sphinx 1.3.5.

fittings.compute.html

 Navigation

 		
 index

 		
 modules |

 		plumbery 1.0.4 documentation »

Configuring CPU and memory

Plumbery has the ability to adjust CPU and RAM to exact configurations, like in the following example:

nodes:

 - myServer:

 appliance: 'Ubuntu 14'
 cpu: 16 2 highperformance
 memory: 48

Components of the cpu: directive

		Component
		Required
		Description

		number of CPU
		yes
		An integer between 1 and 32

		number of core
		no
		Either 1 or 2. Default is 1.

		class of CPU
		no
		Either standard (default) or highperformance

The memory: directive

This is the quantity of RAM in GB, expressed as an integer between 1 and 256.

 © Copyright 2015-206, the community of plumbery users.
 Created using Sphinx 1.3.5.

tutorial.gigafox.html

 Navigation

 		
 index

 		
 modules |

 		plumbery 1.0.4 documentation »

The master plan to conquer the world

The goal of GigaFox is to deploy a global infrastructure involving
multiple resources spread in different regions and connected to each other.
Their fittings plan is the biggest of all.

Fittings plan

Copy the text below and put it in a text file named fittings.yaml:

		 1
 2
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371

 actions:
 - ansible:
 output: gigafox_ansible.yaml
 - inventory:
 output: gigafox_inventory.yaml
 - rub:
 key: ~/.ssh/id_rsa.pub
 output: gigafox_rubs.yaml

 # each facility is described separately

 # Santa Clara - secondary site in USA
 locationId: NA12
 regionId: dd-na

 rub:
 - beachhead: 10.10.10.9
 - beachhead: 10.10.10.10

 basement: beachhead

 blueprints:

 # root resources
 - beachhead:
 domain: &domain
 name: Gigafox
 description: '#us #primary'
 service: advanced
 ipv4: 8
 ethernet: &control
 name: gigafox.control
 description: '#us #ops'
 subnet: 10.0.0.0
 destroy: never
 nodes:
 - beachhead:
 description: '#beachhead #us #ops'
 glue:
 - internet 22
 running: always
 monitoring: essentials
 cloud-config:
 disable_root: false
 ssh_pwauth: True
 packages:
 - python-pip
 - python-dev
 - git
 runcmd:
 - pip install -e git+https://git-wip-us.apache.org/repos/asf/libcloud.git@trunk#egg=apache-libcloud
 - pip install -e git+https://github.com/bernard357/plumbery.git#egg=plumbery

 # management, administration, and monitoring
 - control:
 domain: *domain
 ethernet: *control
 nodes:
 - stackstorm:
 description: '#stackstorm #us #ops'
 glue:
 - internet 22 80 443
 running: always
 monitoring: essentials
 cloud-config:
 disable_root: false
 ssh_pwauth: True
 runcmd:
 - curl -sSL https://raw.githubusercontent.com/DimensionDataCBUSydney/st2_dimensiondata/master/install-eu.sh | sh
 - scom:
 description: 'Microsoft System Center Operation Manager #scom #us #ops'
 appliance: 'Win2012 R2 Std 4 CPU'
 monitoring: essentials

 # workloads dedicated to source code and related
 - source:
 domain: *domain
 ethernet:
 name: gigafox.source
 description: '#us #dev'
 subnet: 10.1.0.0
 destroy: never
 nodes:
 - gitlab:
 description: '#gitlab #us #dev'
 glue:
 - internet 80 443
 - gigafox.control
 monitoring: essentials

 # workloads dealing directly with end-user devices
 - web:
 domain: *domain
 ethernet: &bastion
 name: gigafox.web
 description: '#us'
 subnet: 10.2.0.0
 accept:
 - gigafox.control
 destroy: never
 nodes:
 - web[1..2]_na12:
 description: '#apache #us #primary'
 cpu: 4 2 highperformance
 memory: 8
 disks:
 - 1 500 standard
 - 2 100
 glue:
 - internet 22 80 443
 monitoring: essentials
 cloud-config:
 disable_root: false
 ssh_pwauth: True
 packages:
 - apache2
 - mysql-server
 - libapache2-mod-php5
 - php5-mysql
 runcmd:
 - "rm /var/www/index.html"
 write_files:
 - content: |
 echo '<?php phpinfo();' >
 path: /var/www/index.php
 listeners:
 - http:
 port: 80
 protocol: http
 algorithm: round_robin
 - https:
 port: 443
 protocol: http
 algorithm: round_robin

 - wordpress:
 domain: *domain
 ethernet: *bastion
 nodes:
 - wordpress_na12:
 description: '#wordpress #us #primary'
 cpu: 4 2 highperformance
 memory: 8
 glue:
 - internet 22 80 443
 monitoring: essentials
 cloud-config:
 disable_root: false
 ssh_pwauth: True
 packages:
 - apache2
 - php5
 - php5-mysql
 - mysql-server
 runcmd:
 - wget http://wordpress.org/latest.tar.gz -P /tmp/
 - tar -zxf /tmp/latest.tar.gz -C /var/www/
 - mysql -e "create database wordpress; create user 'wpuser'@'localhost' identified by 'changemetoo'; grant all privileges on wordpress . * to 'wpuser'@'localhost'; flush privileges;"
 - mysql -e "drop database test; drop user 'test'@'localhost'; flush privileges;"
 - mysqladmin -u root password 'changeme'

 # workloads dealing with short-term memory
 - memcache:
 domain: *domain
 ethernet: *bastion
 nodes:
 - redis[1..2]_na12:
 description: '#redis #us #primary'
 memory: 32
 monitoring: essentials

 # docker resources
 - docker:
 domain: *domain
 ethernet: &compute
 name: gigafox.compute
 description: '#us'
 subnet: 10.3.0.0
 accept:
 - gigafox.control
 - gigafox.web
 destroy: never
 nodes:
 - docker[1..5]_na12:
 description: '#docker #us #primary'
 cpu: 32
 memory: 128
 monitoring: essentials
 rub:
 - run rub.update.sh
 - run rub.docker.sh

 # nodejs resources
 - nodejs:
 domain: *domain
 ethernet: *compute
 nodes:
 - nodejs[1..5]_na12:
 description: '#nodejs #us #primary'
 monitoring: essentials
 rub:
 - run rub.update.sh

 # workloads dedicated to data records
 - sql:
 domain: *domain
 ethernet: &data
 name: gigafox.data
 description: '#us'
 subnet: 10.4.0.0
 accept:
 - gigafox.control
 - gigafox.compute
 destroy: never
 nodes:
 - masterSQL_na12:
 description: '#mysql #us #primary'
 appliance: 'RedHat 6 64-bit 4 CPU'
 monitoring: advanced

 # workloads dedicated to big data
 - cassandra:
 domain: *domain
 ethernet: *data
 nodes:
 - cassandra[1..3]_na12:
 description: '#cassandra #us #primary'
 monitoring: essentials

 # workloads dedicated to BLOBs
 - mongodb:
 domain: *domain
 ethernet: *data
 nodes:
 - mongodb[1..7]_na12:
 description: '#mongodb #us #primary'
 monitoring: essentials

 # workloads devoted to object-based storage
 - s3:
 domain: *domain
 ethernet: *data
 nodes:
 - ceph[1..5]_na12:
 description: '#ceph #us #primary'
 monitoring: essentials

 # Ashburn - primary site in USA
 locationId: NA9
 regionId: dd-na

 blueprints:

 # workloads dealing directly with end-user devices
 - web:
 domain: &domain
 name: Gigafox
 description: '#us #secondary'
 service: advanced
 ipv4: 4
 ethernet: &bastion
 name: gigafox.web
 description: '#us'
 subnet: 10.2.0.0
 accept:
 - NA12::gigafox.control
 destroy: never
 nodes:
 - web[1..2]_na9:
 description: '#apache #us #secondary'
 cpu: 4
 memory: 8
 disks:
 - 1 500 standard
 monitoring: essentials
 rub:
 - put rub.puppet.apache.pp /root/apache.pp
 - run rub.puppet.apache.sh /root/apache.pp
 listeners:
 - http:
 port: 80
 protocol: http
 algorithm: round_robin
 - https:
 port: 443
 protocol: http
 algorithm: round_robin

 # workloads dealing with short-term memory
 - memcache:
 domain: *domain
 ethernet: *bastion
 nodes:
 - redis[1..2]_na9:
 description: '#redis #us #secondary'
 monitoring: essentials

 # docker resources
 - docker:
 domain: *domain
 ethernet: &compute
 name: gigafox.compute
 description: '#us'
 subnet: 10.3.0.0
 accept:
 - NA12::gigafox.control
 destroy: never
 nodes:
 - docker[1..5]_na9:
 description: '#docker #us #secondary'
 monitoring: essentials
 rub:
 - run rub.update.sh
 - run rub.docker.sh

 # nodejs resources
 - nodejs:
 domain: *domain
 ethernet: *compute
 nodes:
 - nodejs[1..5]_na9:
 description: '#nodejs #us #secondary'
 monitoring: essentials
 rub:
 - run rub.update.sh

 # workloads dedicated to data records
 - sql:
 domain: *domain
 ethernet: &data
 name: gigafox.data
 description: '#us'
 subnet: 10.4.0.0
 accept:
 - NA12::gigafox.control
 destroy: never
 nodes:
 - slaveSQL_na9:
 description: '#mysql #us #secondary'
 appliance: 'RedHat 6 64-bit 4 CPU'
 monitoring: advanced

 # workloads dedicated to big data
 - cassandra:
 domain: *domain
 ethernet: *data
 nodes:
 - cassandra[1..3]_na9:
 description: '#cassandra #us #secondary'
 monitoring: essentials

 # workloads dedicated to BLOBs
 - mongodb:
 domain: *domain
 ethernet: *data
 nodes:
 - mongodb[1..7]_na9:
 description: '#mongodb #us #secondary'
 monitoring: essentials

 # workloads devoted to object-based storage
 - s3:
 domain: *domain
 ethernet: *data
 nodes:
 - ceph[1..5]_na9:
 description: '#ceph #us #secondary'
 monitoring: essentials

Deployment commands

$ python -m plumbery fittings.yaml build
$ python -m plumbery fittings.yaml start
$ python -m plumbery fittings.yaml prepare

These commands will build fittings as per the provided plan, and start
the server as well. Look at messages displayed by plumbery while it is
working, so you can monitor what’s happening.

Destruction commands

Cloud computing has a hard rule. Any resource has a cost, be it used or not.
At the end of every session, you are encouraged to destroy everything.
Hopefully, plumbery is making this really simple:

$ python -m plumbery fittings.yaml stop
$ python -m plumbery fittings.yaml destroy

 © Copyright 2015-206, the community of plumbery users.
 Created using Sphinx 1.3.5.

tutorial.itop.html

 Navigation

 		
 index

 		
 modules |

 		plumbery 1.0.4 documentation »

iTop Community, to manage your IT assets

This use case will be useful to companies looking for an open source solution
that fosters ITIL best practices: iTop Community, from Combodo [http://www.combodo.com/itop-193].

[image: _images/tutorial.itop.png]

Requirements for this use case

There are a number of actions involved in the overall deployment, and plumbery
will assist to orchestrate all of them, except the online setup of iTop:

		Add a Network Domain

		Add an Ethernet network

		Deploy a Ubuntu server

		Monitor this server

		Assign a public IPv4 address

		Add address translation to ensure end-to-end IP connectivity

		Add firewall rule to accept TCP traffic on port 22 (ssh) and 80 (web)

		Update etc/hosts to bind addresses to host names

		Manage keys to suppress passwords in SSH connections

		Download multiple packages, including Apache, PHP, MySQL

		Install MySQL

		Download and install iTop

Fittings plan

Download this fittings plan [https://github.com/bernard357/plumbery/blob/master/demos/mqtt.pinger.swarm.yaml] if you want to hack it for yourself. This is part of the demonstration
directory of the plumbery project [https://github.com/bernard357/plumbery/tree/master/demos] at GitHub. Alternatively, you can copy the
text below and put it in a text file named fittings.yaml.

		 1
 2
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126

 defaults:

 cloud-config: # default for all nodes created by plumbery
 ssh_keys: # generated randomly, and used on subsequent invocations
 rsa_private: |
 {{ key.rsa_private }}
 rsa_public: "{{ key.rsa_public }}"

 users:
 - default

 - name: ubuntu
 sudo: 'ALL=(ALL) NOPASSWD:ALL'
 ssh-authorized-keys:
 - "{{ key.rsa_public }}"
 - "{{ local.rsa_public }}"

 - name: root
 ssh-authorized-keys:
 - "{{ key.rsa_public }}"
 - "{{ local.rsa_public }}"

 disable_root: false
 ssh_pwauth: false

 locationId: AU10
 regionId: dd-au

 blueprints:

 - itop:

 domain: &domain
 name: iTopFox
 description: "Demonstration of iTop server"
 ipv4: auto

 ethernet: ðernet
 name: iTopNetwork
 subnet: 10.0.0.0

 nodes:

 - itop:

 description: "#itop #ubuntu"

 information:
 - "an iTop server:"
 - "http://{{ node.public }}"
 - "use following parameters for MySQL:"
 - "host: localhost"
 - "user: root"
 - "password: {{ mysql_root.secret }}"

 appliance: 'Ubuntu 14'

 cpu: 2
 memory: 4

 glue:
 - internet 22 80

 monitoring: essentials

 cloud-config:

 hostname: "{{ node.name }}"

 bootcmd:
 - echo "mysql-server mysql-server/root_password password {{ mysql_root.secret }}" | sudo debconf-set-selections
 - echo "mysql-server mysql-server/root_password_again password {{ mysql_root.secret }}" | sudo debconf-set-selections

 packages:
 - ntp
 - apache2
 - mysql-server
 - php5
 - php5-mysql
 - php5-ldap
 - php5-mcrypt
 - php5-cli
 - php-soap
 - php5-json
 - graphviz
 - unzip

 write_files:

 - path: /root/hosts.awk
 content: |
 #!/usr/bin/awk -f
 /^{{ node.public }}/ {next}
 {print}
 END {
 print "{{ node.public }} {{ node.name }}"
 }

 - path: /home/ubuntu/.my.cnf
 permissions: '0400'
 content: |
 [client]
 user=root
 password={{ mysql_root.secret }}

 runcmd:

 - echo "===== Handling ubuntu identity"
 - cp -n /etc/ssh/ssh_host_rsa_key /home/ubuntu/.ssh/id_rsa
 - cp -n /etc/ssh/ssh_host_rsa_key.pub /home/ubuntu/.ssh/id_rsa.pub
 - chown ubuntu:ubuntu /home/ubuntu/.ssh/*
 - sed -i "/StrictHostKeyChecking/s/^.*$/ StrictHostKeyChecking no/" /etc/ssh/ssh_config

 - echo "===== Updating /etc/hosts"
 - cp -n /etc/hosts /etc/hosts.original
 - awk -f /root/hosts.awk /etc/hosts >/etc/hosts.new && mv /etc/hosts.new /etc/hosts

 - echo "===== Installing iTop"
 - curl -L -o itop.zip https://sourceforge.net/projects/itop/files/latest/download
 - unzip itop.zip
 - rm /var/www/html/index.html
 - mv web/* /var/www/html
 - chown -R www-data:www-data /var/www/html

Deployment commands

$ python -m plumbery fittings.yaml deploy

This command will build fittings as per the provided plan, and start
server as well. Look at messages displayed by plumbery while it is
working, so you can monitor what’s happening.

Follow-up commands

At the end of the deployment, plumbery will display on screen some instructions
to help you move forward. You can ask plumbery to display this information
at any time with the following command:

$ python -m plumbery fittings.yaml information

Final step is to connect to iTop in a web browser, and to complete the setup
online.

Destruction commands

To destroy everything and stop the bill you would do:

$ python -m plumbery fittings.yaml dispose

 © Copyright 2015-206, the community of plumbery users.
 Created using Sphinx 1.3.5.

questions.html

 Navigation

 		
 index

 		
 modules |

 		plumbery 1.0.4 documentation »

Frequently asked questions

About project governance

Where is this project coming from?

The plumbery project is an initiative from software teams of Dimension Data. It has been created by orchestration experts in Europe, and has been endorsed by the global research and development organisation.

Is this software available to anyone?

Yes. The software and the documentation have been open-sourced from the outset, so that it can be useful to the global community of IoT and of digital practioners. The plumbery project is based on the [Apache License](https://www.apache.org/licenses/LICENSE-2.0).

Do you accept contributions to this project?

Yes. There are multiple ways for end-users and for non-developers to contribute to this project. For example, if you hit an issue, please report it at GitHub. This is where we track issues and report on corrective actions.

And if you know [how to clone a GitHub project](https://help.github.com/articles/cloning-a-repository/), we are happy to consider [pull requests](https://help.github.com/articles/about-pull-requests/) with your modifications. This is the best approach to submit additional reference configuration files, or updates of the documentation, or even evolutions of the python code.

About project deployment

How to install the full system?

Use [detailed instructions](installing.rst) that explain what you have to do step by step.

Is it required to know python?

Fortunately not. Plumbery makes extensive usage of separate configuration files that can be modified at will.

About troubleshooting

How to control data sent to cloud-init?

The term user-data is naming detailed configuration instructions given to cloud-init.
Plumbery builds user-data for each node that has a cloud-config statement in the fittings plan.
Data prepared by plumbery can be inspected with the debug flag:

$ python -m plumbery fittings.yaml deploy -d

In the stream of messages, look for the keyword #cloud-config and following lines. For example:

#cloud-config
users:
 - default
 - ssh-authorized-keys:
 - ssh-rsa AAAAB3NzaC1yc2EAAAADAQABAAABAQC5QNc7Z+PHF2S4Nr/WGs0aIs3FBkwBvHBP4aBdPb35KEWbeKx+X4iJ3CFY4DCqNPsS01IarrzcKzHkpzDRxptB+6iLQE4y7dvIrkHP8rqXOspbQ4afyHE0uN1Jf6kp4kylAe6zwWg
...

If you are not sure that such data is correct YAML syntax, then copy the full text, starting on the keyword #cloud-config, and paste it in YAML Lint:

http://www.yamllint.com

YAML Lint will immediately tell you if data is ok or not:

[image: _images/yamllint.png]

How to troubleshoot cloud-init?

Connect to the target server over SSH. Then check the existence and content of the cloud-init log file:

$ less /var/log/cloud-init-output.log

If the file does not exist, or if its content does not reflect statements put in the plumbery configuration file, then you can inspect user data that have been uploaded, and then run cloud-init manually:

$ cd /var/lib/cloud/seed/nocloud-net/
$ less user-data
$ sudo cloud-init --debug --file user-data modules --mode final

Check error messages thrown by cloud-init and react accordingly.

 © Copyright 2015-206, the community of plumbery users.
 Created using Sphinx 1.3.5.

tutorial.mongo.cluster.html

 Navigation

 		
 index

 		
 modules |

 		plumbery 1.0.4 documentation »

Cluster of MongoDB nodes

MongoDB is a database that is really well-adapted to real-time data analytics.
In this tutorial we will deploy multiple servers, and glue them together.

Requirements for this use case

		Add a Network Domain

		Add an Ethernet network

		Deploy multiple servers servers

		Monitor these servers

		Add mongoDB to the servers

		Create a cluster of configuration servers

		Add sharding servers

Fittings plan

Copy the text below and put it in a text file named fittings.yaml:

		 1
 2
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112

 locationId: EU8 # London in Europe
 regionId: dd-eu

 blueprints:

 - mongo: mongo_config mongo_mongos mongo_shard

 - mongo_config:

 domain: &domain
 name: MongoFox
 service: essentials
 ipv4: 12

 ethernet: ðernet
 name: mongofox.servers
 subnet: 192.168.20.0

 nodes:

 - mongo_config0[1..3]:

 glue:
 - internet 22

 cloud-config:
 disable_root: false
 ssh_pwauth: True
 packages:
 - ntp

 write_files: # replica set for configuration servers

 - path: /etc/mongod.conf.sed
 content: |
 s/#sharding:/sharding:\n clusterRole: configsvr\nreplication:\n replSetName: configReplSet/

 runcmd:
 - "sudo apt-key adv --keyserver hkp://keyserver.ubuntu.com:80 --recv EA312927"
 - echo "deb http://repo.mongodb.org/apt/ubuntu "$(lsb_release -sc)"/mongodb-org/3.2 multiverse" | sudo tee /etc/apt/sources.list.d/mongodb-org-3.2.list
 - sudo apt-get update
 - sudo apt-get install -y mongodb-org
 - cp -n /etc/mongod.conf /etc/mongod.conf.original
 - sed -i -f /etc/mongod.conf.sed /etc/mongod.conf
 - sudo service mongod restart

 - mongo_mongos:

 domain: *domain
 ethernet: *ethernet

 nodes:

 - mongo_mongos01:

 glue:
 - internet 22

 cloud-config:
 disable_root: false
 ssh_pwauth: True
 packages:
 - ntp

 write_files: # replica set for mongos servers

 - path: /etc/mongod.conf.sed
 content: |
 s/#sharding:/sharding:\n configDB: "configReplSet/{{mongo_config01}}:27019,{{mongo_config02}}:27019,{{mongo_config03}}:27019"/

 runcmd:
 - "sudo apt-key adv --keyserver hkp://keyserver.ubuntu.com:80 --recv EA312927"
 - echo "deb http://repo.mongodb.org/apt/ubuntu "$(lsb_release -sc)"/mongodb-org/3.2 multiverse" | sudo tee /etc/apt/sources.list.d/mongodb-org-3.2.list
 - sudo apt-get update
 - sudo apt-get install -y mongodb-org
 - cp -n /etc/mongod.conf /etc/mongod.conf.original
 - sed -i -f /etc/mongod.conf.sed /etc/mongod.conf
 - sudo service mongod restart

 - mongo_shard:

 domain: *domain
 ethernet: *ethernet

 nodes:

 - mongo_shard0[1..2]:

 glue:
 - internet 22

 cloud-config:
 disable_root: false
 ssh_pwauth: True
 packages:
 - ntp

 write_files: # replica set for sharding servers

 - path: /etc/mongod.conf.sed
 content: |
 s/#sharding:/sharding:\n clusterRole: shardsvr/

 runcmd:
 - "sudo apt-key adv --keyserver hkp://keyserver.ubuntu.com:80 --recv EA312927"
 - echo "deb http://repo.mongodb.org/apt/ubuntu "$(lsb_release -sc)"/mongodb-org/3.2 multiverse" | sudo tee /etc/apt/sources.list.d/mongodb-org-3.2.list
 - sudo apt-get update
 - sudo apt-get install -y mongodb-org
 - cp -n /etc/mongod.conf /etc/mongod.conf.original
 - sed -i -f /etc/mongod.conf.sed /etc/mongod.conf
 - sudo service mongod restart

Deployment commands

$ python -m plumbery fittings.yaml deploy

These commands build fittings as per the provided plan, start servers
and bootstrap them. The last command will display the name and password
used to configure the database.

You can check status of servers like this:

$ python -m plumbery fittings.yaml ping

Follow-up commands

TO BE COMPLETED

Destruction commands

The more servers you have, the more costly it is. Would you like to stop the
invoice?

$ python -m plumbery fittings.yaml stop
$ python -m plumbery fittings.yaml destroy

 © Copyright 2015-206, the community of plumbery users.
 Created using Sphinx 1.3.5.

tutorial.minio.html

 Navigation

 		
 index

 		
 modules |

 		plumbery 1.0.4 documentation »

Standalone Object-Based Storage with Minio

Minio [https://github.com/minio/minio/blob/master/README.md] is a minimal cloud storage server that is compatible with Amazon S3
APIs. This is useful if you need a lightweight object-based storage backend,
for example while you develop a new digital application.

Requirements for this use case

		Deploy at Frankfurt in Europe

		Create a Network Domain

		Create an Ethernet network (a VLAN)

		Deploy a virtual server

		Add the server to the automated monitoring dashboard

		Assign a public IPv4 address to the server

		Add address translation to ensure end-to-end IP connectivity

		Add firewall rule to accept TCP traffic on port 22 (ssh) and 8080 (minio)

		Add minio to the virtual machine and launch the service

Fittings plan

Copy the text below and put it in a text file named fittings.yaml:

		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38

 locationId: NA12
 regionId: dd-na

 blueprints:

 - minio:

 domain:
 name: MinioFox
 ipv4: 2

 ethernet:
 name: miniofox.servers
 subnet: 192.168.20.0

 nodes:

 - minio01:

 glue:
 - internet 22 8080

 information:
 - "connect to this server in a terminal window: ssh root@{{ node.public }}"
 - "then get AccessKey and SecretKey from minio banner: cat /root/minio_keys.txt"

 cloud-config:
 disable_root: false
 ssh_pwauth: true
 packages:
 - ntp
 runcmd:
 - su ubuntu -c "curl https://dl.minio.io/server/minio/release/linux-amd64/minio >/home/ubuntu/minio"
 - chmod +x /home/ubuntu/minio
 - mkdir /home/shared
 - chown ubuntu:ubuntu /home/shared
 - su ubuntu -c "~/minio --address {{ node.private }}:8080 server expiry 1h /home/shared" >/root/minio_keys.txt

Some notes on directives used in this fittings plan:

Not root - The minio server is expecting to run as user ubuntu, so we are enforcing
this through the commands passed to the server.

Interactive secrets - The server is launched on the last command. It
generates randomly two secrets that have to be communicated to client software
and displays these on screen. Information is captured in a text file so that it
can be retrieved via a terminal session afterwards.

Object expiration - Server is configured to expire files after 1 hour of
storage. You can change this of course if needed.

Deployment commands

$ python -m plumbery fittings.yaml deploy

This command will build fittings as per the provided plan, start
the server, and bootstrap it. Look at messages displayed by plumbery while it is
working, so you can monitor what’s happening.

Install and configure the client

To actually demonstrate the service you will have to install client
software at your workstation, and configure it to access the back-end.

Minio is compatible with popular S3 tools such as s3cmd or similar.
Here we will use the Minio client, also called mc.

Instructions to install Minio client software can be found here [https://github.com/minio/mc]

Next step is to retrieve secrets from the server that has been deployed
by plumbery. To do this you have to connect to the server and to display
a file that was generated during the setup:

$ ssh root@<ipv4_here>
...
$ cat minio_keys.txt

In a separate terminal window you can paste the AccessKey and the SecretKey
to configure the Minio client:

$./mc config host add http://<public_address>:8080 <AccessKey> <Secretkey>

Play with the service

Ok, here is the full sequence:
* create a bucket
* copy a file from your workstation to the bucket
* generate a link to retrieve the file securely
* test the link and download the file

In other terms, type this at your workstation:

$./mc mb http://<public_address>:8080/stuff
$./mc cp <file> http://<public_address>:8080/stuff
$./mc share download http://<public_address>:8080/stuff/

A long web link is displayed on last command. Select and copy everything,
then move to a browser window and paste everything in the top bar. Press
Enter to start the download.

You can switch to the other terminal window and check the state of the
server itself:

$ cd /home/shared
$ cd stuff
$ ls

Last command should display the name of the file that you copied earlier
in the sequence.

Destruction commands

Cloud computing has a hard rule. Any resource has a cost, be it used or not.
At the end of every session, you are encouraged to destroy everything.
Hopefully, plumbery is making this really simple:

$ python -m plumbery fittings.yaml stop
$ python -m plumbery fittings.yaml destroy

 © Copyright 2015-206, the community of plumbery users.
 Created using Sphinx 1.3.5.

_modules/plumbery/polishers/base.html

 Navigation

 		
 index

 		
 modules |

 		plumbery 1.0.4 documentation »

 		Module code »

 Source code for plumbery.polishers.base

Licensed to the Apache Software Foundation (ASF) under one or more
contributor license agreements. See the NOTICE file distributed with
this work for additional information regarding copyright ownership.
The ASF licenses this file to You under the Apache License, Version 2.0
(the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
#
http://www.apache.org/licenses/LICENSE-2.0
#
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.

__all__ = ['NodeConfiguration']

[docs]class NodeConfiguration(object):
 __name__ = 'BaseNodeConfiguration'
 _element_name_ = 'base'
 configuration = {}

 def __init__(self, engine=None, facility=None):
 pass

[docs] def validate(self, settings):
 raise NotImplementedError()

[docs] def configure(self, node, settings):
 raise NotImplementedError()

[docs] def deconfigure(self, node, settings):
 raise NotImplementedError()

 © Copyright 2015-206, the community of plumbery users.
 Created using Sphinx 1.3.5.

_static/down.png

_static/comment.png

_modules/plumbery/bootstrap.html

 Navigation

 		
 index

 		
 modules |

 		plumbery 1.0.4 documentation »

 		Module code »

 Source code for plumbery.bootstrap

Licensed to the Apache Software Foundation (ASF) under one or more
contributor license agreements. See the NOTICE file distributed with
this work for additional information regarding copyright ownership.
The ASF licenses this file to You under the Apache License, Version 2.0
(the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
#
http://www.apache.org/licenses/LICENSE-2.0
#
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.

from __future__ import absolute_import

import argparse
import os
import requests
import six
import sys

if six.PY2:
 from urlparse import urljoin as up
else:
 from urllib.parse import urljoin as up

[docs]def parse_args(args):
 parser = argparse.ArgumentParser(description=__doc__)
 parser.add_argument('-d', '--debug', action='store_true')
 parser.add_argument('-o', '--output', help='output directory')
 parser.add_argument('files', nargs='+', help='The URL for remote files')
 return parser.parse_args(args)

[docs]def main(args):
 if args.output is None:
 args.output = os.getcwd()
 for url in args.files:
 filename = url.split('/')[-1]
 if filename == 'manifest.mf':
 download_manifest(url, args.output)
 else:
 download_file(url, args.output)

[docs]def download_manifest(url, output_dir):
 download_file(url, output_dir)
 with open(os.path.join(output_dir, 'manifest.mf'), 'r') as manifest_file:
 lines = manifest_file.readlines()
 for i in lines:
 download_file(up(url, i), output_dir)

[docs]def download_file(url, output_dir):
 local_filename = url.split('/')[-1]
 r = requests.get(url, stream=True)
 with open(os.path.join(output_dir, local_filename), 'wb') as f:
 for chunk in r.iter_content(chunk_size=1024):
 if chunk: # filter out keep-alive new chunks
 f.write(chunk)
 return local_filename

if __name__ == "__main__":
 args = parse_args(sys.argv[1:])
 main(args)

 © Copyright 2015-206, the community of plumbery users.
 Created using Sphinx 1.3.5.

_modules/index.html

 Navigation

 		
 index

 		
 modules |

 		plumbery 1.0.4 documentation »

 All modules for which code is available

		plumbery.bootstrap

		plumbery.exception

		plumbery.polishers.base

 © Copyright 2015-206, the community of plumbery users.
 Created using Sphinx 1.3.5.

_modules/plumbery/exception.html

 Navigation

 		
 index

 		
 modules |

 		plumbery 1.0.4 documentation »

 		Module code »

 Source code for plumbery.exception

Licensed to the Apache Software Foundation (ASF) under one or more
contributor license agreements. See the NOTICE file distributed with
this work for additional information regarding copyright ownership.
The ASF licenses this file to You under the Apache License, Version 2.0
(the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
#
http://www.apache.org/licenses/LICENSE-2.0
#
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.

[docs]class PlumberyException(Exception):
 def __init__(self, message):
 self.message = message
 super(PlumberyException, self).__init__(message)

[docs]class ConfigurationError(PlumberyException):
 pass

 © Copyright 2015-206, the community of plumbery users.
 Created using Sphinx 1.3.5.

plumbery.polishers.memory.html

 Navigation

 		
 index

 		
 modules |

 		plumbery 1.0.4 documentation »

plumbery.polishers.memory module

 © Copyright 2015-206, the community of plumbery users.
 Created using Sphinx 1.3.5.

tutorial.nfs.html

 Navigation

 		
 index

 		
 modules |

 		plumbery 1.0.4 documentation »

NFS over ipv6 back-end network

In this tutorial a NFS server is deployed at one data centre, and
a NFS client is deployed at another data centre. The infrastructure and the
nodes are configured to talk to each other over the secured ipv6 back-bone
that ties all MCP together.

Requirements for this use case

		Add a Network Domain at each data centre

		Add an Ethernet network at each data centre

		Allow IPv6 traffic between the two networks

		Deploy a Ubuntu server at each data centre

		Monitor these servers

		Assign a public IPv4 address to each server

		Add address translation to IPv4 connectivity from the Internet

		Add firewall rule to accept TCP traffic on port 22 (ssh)

		Add ipv6 addresses to /etc/hosts for easy handling

		Install NFS back-end software on server node

		Install NFS client software on client node

		At the client node, change /etc/fstab to mount NFS volume automatically

		From the client node, write a hello.txt to the server

Fittings plan

Copy the text below and put it in a text file named fittings.yaml:

		 1
 2
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128

 locationId: AU10
 regionId: dd-au

 blueprints:

 - nfs:

 domain:
 name: NfsFox
 description: "Demonstration of NFS - server side"
 ipv4: 2

 ethernet:
 name: nfsfox.servers
 subnet: 192.168.20.0
 accept:
 - AU11::nfsfox.servers

 nodes:

 - nfsServer:

 appliance: 'Ubuntu 14'
 cpu: 2
 memory: 8
 monitoring: essentials
 glue:
 - internet 22
 information:
 - "this is the NFS server"
 - "ssh root@{{ nfsServer.public }}"
 - "check service with: showmount -e nfsServer"
 cloud-config:
 disable_root: false
 ssh_pwauth: True
 packages:
 - ntp
 - nfs-kernel-server
 write_files:
 - path: /etc/exports
 content: |
 /var/nfs *(rw,sync,no_subtree_check)

 - path: /root/hosts.awk
 content: |
 #!/usr/bin/awk -f
 /^{{ nfsServer.ipv6 }}/ {next}
 /^{{ AU11::nfsClient.ipv6 }}/ {next}
 {print}
 END {
 print "{{ nfsServer.ipv6 }} nfsServer"
 print "{{ AU11::nfsClient.ipv6 }} nfsClient"
 }

 runcmd:
 - cp -n /etc/hosts /etc/hosts.original
 - awk -f /root/hosts.awk /etc/hosts >/etc/hosts.new && mv /etc/hosts.new /etc/hosts
 - mkdir /var/nfs
 - chown nobody:nogroup /var/nfs
 - exportfs -a
 - service nfs-kernel-server start

 locationId: AU11
 regionId: dd-au

 blueprints:

 - nfs:

 domain:
 name: NfsFox
 description: "Demonstration of NFS - client side"
 ipv4: 2

 ethernet:
 name: nfsfox.servers
 subnet: 192.168.20.0
 accept:
 - AU10::nfsfox.servers

 nodes:
 - nfsClient:
 appliance: 'Ubuntu 14'
 monitoring: essentials
 glue:
 - internet 22
 information:
 - "this is the NFS client, with automatic mount to the server"
 - "ssh root@{{ nfsClient.public }}"
 - "check connectivity to server with: showmount -e nfsServer"
 - "check actual service with: mount -t nfs"
 cloud-config:
 disable_root: false
 ssh_pwauth: True
 packages:
 - ntp
 - nfs-common
 write_files:
 - path: /root/hosts.awk
 content: |
 #!/usr/bin/awk -f
 /^{{ AU10::nfsServer.ipv6 }}/ {next}
 /^{{ nfsClient.ipv6 }}/ {next}
 {print}
 END {
 print "{{ AU10::nfsServer.ipv6 }} nfsServer"
 print "{{ nfsClient.ipv6 }} nfsClient"
 }

 - path: /root/fstab.awk
 content: |
 #!/usr/bin/awk -f
 !/nfsServer/
 END {
 print "nfsServer:/var/nfs /shared-nfs nfs auto,noatime,nolock,bg,nfsvers=4,intr,actimeo=1800 0 0"
 }

 runcmd:
 - cp -n /etc/hosts /etc/hosts.original
 - awk -f /root/hosts.awk /etc/hosts >/etc/hosts.new && mv /etc/hosts.new /etc/hosts
 - mkdir -p /shared-nfs
 - cp -n /etc/fstab /etc/fstab.original
 - awk -f /root/fstab.awk /etc/fstab >/etc/fstab.new && mv /etc/fstab.new /etc/fstab
 - mount -a
 - df -h
 - echo "hello world written by nfsClient" >/shared-nfs/hello.txt

Some interesting remarks on this fittings plan:

IPv6 connectivity - In this case we can see that network names and
private IPv4 subnets are exactly the same at both data centres. In other terms,
we don’t need IPv4 to be routable across the two locations. We use IPv6 instead,
and plumbery helps to orchestrate the long addresses that are coming with this
protocol.

etc/hosts - The update of etc/hosts is made by a script in AWK language.
The script is built dynamically by plumbery, based on actual addresses assigned
to nodes. Since each data centre is described in a separate YAML document of
the fittings plan, there is a special syntax to designate remote networks and
nodes. At AU10, the remote network is designated by AU11::nfsfox.servers
and the NFS client by AU11::nfsClient. This is creating name spaces that can
be geographically consistent across global deployments.

etc/fstab - On the client side there is an example of AWK script to modify etc/fstab
dynamically. Therefore, if the node is rebooted it will reconnect
automatically.

Deployment commands

$ python -m plumbery fittings.yaml deploy

This command will build fittings as per the provided plan, start the server
and bootstrap it.

Follow-up commands

You can find instructions to connect, including IP addresses to use, like this:

$ python -m plumbery fittings.yaml information

The best is to go to the NFS server via ssh, and to read the file written by
the NFS client in /var/nfs.

Destruction commands

The more servers you have, the more costly it is. Would you like to stop the
invoice?

$ python -m plumbery fittings.yaml dispose

 © Copyright 2015-206, the community of plumbery users.
 Created using Sphinx 1.3.5.

tutorial.lemp.html

 Navigation

 		
 index

 		
 modules |

 		plumbery 1.0.4 documentation »

LEMP server (Linux, Nginx, PHP, MySQL)

This is a basic installation of a fast web server.

Requirements for this use case

		Add a Network Domain

		Add an Ethernet network

		Deploy a Linux server

		Monitor this server

		Assign a public IPv4 address

		Add address translation to ensure end-to-end IP connectivity

		Add firewall rule to accept TCP traffic on port 22 (ssh) and 80 (web)

		Install Nginx, PHP and MySQL

		Change the index web page and provide a PHP information page

Fittings plan

Copy the text below and put it in a text file named fittings.yaml:

		 1
 2
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104

 locationId: NA12
 regionId: dd-na

 blueprints:

 - lemp:

 domain:
 name: LempFox
 service: essentials
 ipv4: 2

 ethernet:
 name: lempfox.servers
 subnet: 192.168.20.0

 nodes:

 - apache01:

 cpu: 2
 memory: 4

 monitoring: essentials
 glue:
 - internet 22 80

 information:
 - "open a browser at http://{{ node.public }}/ to view it live"

 cloud-config:

 disable_root: false
 ssh_pwauth: true
 apt_update: true

 packages:
 - nginx
 - php5-fpm
 - php5-mysql
 - mysql-server
 - php5-mcrypt
 - php5-gd
 - php5-curl

 write_files:

 - path: /etc/nginx/sites-available/default
 content: |
 server {
 listen 80 default_server;
 listen [::]:80 default_server ipv6only=on;
 root /var/www/html;
 index index.php index.html index.htm;
 server_name localhost;
 location / {
 # First attempt to serve request as file, then
 # as directory, then fall back to displaying a 404.
 try_files $uri $uri/ =404;
 # Uncomment to enable naxsi on this location
 # include /etc/nginx/naxsi.rules
 }
 error_page 404 /404.html;
 error_page 500 502 503 504 /50x.html;
 location = /50x.html {
 root /usr/share/nginx/html;
 }
 location ~ \.php$ {
 try_files $uri =404;
 fastcgi_split_path_info ^(.+\.php)(/.+)$;
 fastcgi_pass unix:/var/run/php5-fpm.sock;
 fastcgi_index index.php;
 include fastcgi.conf;
 }
 }

 - path: /var/www/html/index.php
 content: |
 <html>
 <head>
 <title>Hello World</title>
 </head>
 <body>
 <h1>Hello World</h1>
 <?php echo '<p>This is a warm welcome from plumbery {{ plumbery.version }}</p>'; ?>
 <?php echo '<p>Powered by Linux-Nginx-MySQL-PHP (LEMP)</p>'; ?>
 </body>
 </html>

 - path: /var/www/html/info.php
 content: |
 <?php
 phpinfo();
 ?>
 runcmd:
 - mv /var/www/html/index.html /var/www/html/index.html.deprecated
 - mkdir -p /var/www/html
 - cp /usr/share/nginx/html/index.html /var/www/html/
 - sed -ie "s/;cgi.fix_pathinfo=1/cgi.fix_pathinfo=0/" /etc/php5/fpm/php.ini
 # Ensure backwards compatible with 14.04
 - file=/etc/nginx/fastcgi.conf; if [! -f "$file"]; then ln -s /etc/nginx/fastcgi_params "$file"; fi
 - service nginx restart

Deployment commands

$ python -m plumbery fittings.yaml deploy

These commands will build fittings as per the provided plan, start the server
and bootstrap it.

You can find the public address assigned to the web server like this:

$ python -m plumbery fittings.yaml ping

Follow-up commands

Open a browser window and paste the public address reported by plumbery.
You should receive a welcome HTML page in return.

Destruction commands

The more servers you have, the more costly it is. Would you like to stop the
invoice?

$ python -m plumbery fittings.yaml stop
$ python -m plumbery fittings.yaml destroy

 © Copyright 2015-206, the community of plumbery users.
 Created using Sphinx 1.3.5.

